reflection from layered surfaces due to subsurface
play

Reflection from Layered Surfaces due to Subsurface Scattering Pat - PowerPoint PPT Presentation

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Reflection from Layered Surfaces due to Subsurface Scattering Pat Hanrahan Wolfgang Krueger SIGGRAPH 1993 Ref. & Trans. Desc. of Materials


  1. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Reflection from Layered Surfaces due to Subsurface Scattering Pat Hanrahan Wolfgang Krueger SIGGRAPH 1993

  2. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Outlines Ref. & Trans. 1 Desc. of Materials 2 Light Trans. Eq. 3 Solving the Int. Eq. 4 Multiple Scattering 4

  3. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Reflected and Transmitted Radiances L r ( θ r , φ r ) = L r,s ( θ r , φ r ) + L r,v ( θ r , φ r ) (1) L t ( θ t , φ t ) = L ri ( θ t , φ t ) + L t,v ( θ t , φ t ) (2)

  4. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering BRDF and BTDF L r ( θ r , φ r ) f r ( θ i , φ i ; θ r , φ r ) ≡ ( BRDF ) (3) L i ( θ i , φ i ) cos θ i dw i L t ( θ t , φ t ) f t ( θ i , φ i ; θ t , φ t ) ≡ ( BTDF ) (4) L i ( θ i , φ i ) cos θ i dw i

  5. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Fresnel transmission and reflection For planar surface R 12 ( n i , n t ; θ i , φ i → θ r , φ r ) L i ( θ i , φ i ) L r ( θ r , φ r ) = (5) T 12 ( n i , n t ; θ i , φ i → θ t , φ t ) L i ( θ i , φ i ) L t ( θ t , φ t ) = (6)

  6. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Fresnel transmission and reflection For planar surface R 12 ( n i , n t ; θ i , φ i → θ r , φ r ) L i ( θ i , φ i ) L r ( θ r , φ r ) = (5) T 12 ( n i , n t ; θ i , φ i → θ t , φ t ) L i ( θ i , φ i ) L t ( θ t , φ t ) = (6) where R 12 ( n i , n t ; θ i , φ i → θ r , φ r ) = R ( n i , n t , cos θ i , cos θ t ) n 2 T = n 2 t t T 12 ( n i , n t ; θ i , φ i → θ t , φ t ) = (1 − R ) n 2 n 2 i i

  7. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Fresnel transmission and reflection For planar surface R 12 ( n i , n t ; θ i , φ i → θ r , φ r ) L i ( θ i , φ i ) L r ( θ r , φ r ) = (5) T 12 ( n i , n t ; θ i , φ i → θ t , φ t ) L i ( θ i , φ i ) L t ( θ t , φ t ) = (6) In our model of reflection: f r = Rf r,s + Tf r,v = Rf r,s + (1 − R ) f r,v (7)

  8. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Description of Materials Index of Refraction Absorption and scattering cross section σ t = σ a + σ s Scattering phase function Henyey-Greenstein 1 − g 2 p HG (cos j ) = 1 (1 + g 2 − 2 g cos j ) 3 / 2 4 π

  9. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Light Transport Equations Transport theory models the distribution of light in a volume by ∂L ( � x, θ, φ ) = ∂s � x ; θ, φ ; θ ′ , φ ′ ) L ( � x, θ ′ , φ ′ ) dθ ′ dφ ′ − σ t L ( � x, θ, φ ) + σ s p ( � (8)

  10. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Light Transport Equations ∂L ( � x, θ, φ ) = ∂s � x ; θ, φ ; θ ′ , φ ′ ) L ( � x, θ ′ , φ ′ ) dθ ′ dφ ′ − σ t L ( � x, θ, φ ) + σ s p ( � (8) cos θ∂L ( θ, φ ) = ∂z � p ( θ, φ ; θ ′ , φ ′ ) L ( θ ′ , φ ′ ) dθ ′ dφ ′ − σ t L ( θ, φ ) + σ s (9)

  11. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Light Transport Equations ∂L ( � x, θ, φ ) = ∂s � x ; θ, φ ; θ ′ , φ ′ ) L ( � x, θ ′ , φ ′ ) dθ ′ dφ ′ − σ t L ( � x, θ, φ ) + σ s p ( � (8) cos θ∂L ( θ, φ ) = ∂z � p ( θ, φ ; θ ′ , φ ′ ) L ( θ ′ , φ ′ ) dθ ′ dφ ′ − σ t L ( θ, φ ) + σ s (9) L ( z ; θ, φ ) = (10) � z σ s ( z ′ ) p ( z ′ ; θ, φ ; θ ′ , φ ′ ) L ( z ′ ; θ ′ ; φ ′ ) dw ′ dz ′ R z ′ � σ t dz ′′ e − 0 cos θ cos θ 0

  12. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering L ( θ, φ ) = L + ( θ, φ ) + L − ( π − θ, φ ) (11)

  13. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering L ( θ, φ ) = L + ( θ, φ ) + L − ( π − θ, φ ) (11) � L + ( z = 0; θ ′ , φ ′ ) f t,s ( θ, φ ; θ ′ , φ ′ ) L i ( θ, φ ) dw i = (12)

  14. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering L ( θ, φ ) = L + ( θ, φ ) + L − ( π − θ, φ ) (11) � L + ( z = 0; θ ′ , φ ′ ) f t,s ( θ, φ ; θ ′ , φ ′ ) L i ( θ, φ ) dw i = (12) T 12 ( n i , n t ; θ i , φ i → θ ′ , φ ′ ) L i ( θ i , φ i ) (13) =

  15. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering � L r,v ( θ r , φ r ) = f t,s ( θ, φ ; θ r , φ r ) L − ( z = 0; θ, φ ) dw (14)

  16. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering � L r,v ( θ r , φ r ) = f t,s ( θ, φ ; θ r , φ r ) L − ( z = 0; θ, φ ) dw (14) T 21 ( n 2 , n 1 ; θ, φ → θ r , φ r ) L − ( θ, φ ) = (15)

  17. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering � L r,v ( θ r , φ r ) = f t,s ( θ, φ ; θ r , φ r ) L − ( z = 0; θ, φ ) dw (14) T 21 ( n 2 , n 1 ; θ, φ → θ r , φ r ) L − ( θ, φ ) = (15) � L t,v ( θ t , φ t ) = f t,s ( θ, φ ; θ t , φ t ) L + ( z = d ; θ, φ ) dw (16)

  18. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering � L r,v ( θ r , φ r ) = f t,s ( θ, φ ; θ r , φ r ) L − ( z = 0; θ, φ ) dw (14) T 21 ( n 2 , n 1 ; θ, φ → θ r , φ r ) L − ( θ, φ ) = (15) � L t,v ( θ t , φ t ) = f t,s ( θ, φ ; θ t , φ t ) L + ( z = d ; θ, φ ) dw (16) T 23 ( n 2 , n 3 ; θ, φ → θ t , φ t ) L + ( z = d ; θ, φ ) =

  19. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Solving the Intergral Equation ∞ � L ( i ) L = i =0 L ( i +1) ( z ; θ, φ ) = (17) � z σ s ( z ′ ) p ( z ′ ; θ, φ ; θ ′ , φ ′ ) L ( i ) ( z ′ ; θ ′ ; φ ′ ) dw ′ dz ′ R z ′ � σ t dz ′′ e − 0 cos θ cos θ 0

  20. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering First-Order Approximation L (0) L + ( z = 0) e − τ/ cos θ = (18) + where � z τ ( z ) = σ t dz 0 (19)

  21. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering First-Order Approximation L (0) L + ( z = 0) e − τ/ cos θ = (18) + where � z τ ( z ) = σ t dz 0 (19) L (0) T 23 ( n 2 , n 3 ; θ, φ → θ t , φ t ) L (0) t,v ( θ t , φ t ) = + ( θ, φ ) T 12 T 23 e − τ d L i ( θ i , φ i ) = (20)

  22. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering First-Order Approximation L (0) L + ( z = 0) e − τ/ cos θ = (18) + where � z τ ( z ) = σ t dz 0 (19) L (0) T 23 ( n 2 , n 3 ; θ, φ → θ t , φ t ) L (0) t,v ( θ t , φ t ) = + ( θ, φ ) T 12 T 23 e − τ d L i ( θ i , φ i ) = (20) cos θ i L (1) WT 12 T 21 p ( φ − θ r , φ r ; θ i , φ i ) r,v ( θ r , φ r ) = cos θ i + cos θ r (1 − e − τ d (1 / cos θ i +1 / cos θ r ) ) L i ( θ i , φ i ) (21)

  23. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering The reflection steadily increases as the layer becomes thicker.

  24. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering The distributions vary as a function of reflection direction. Lambert’s Law predicts a constant reflectance in all directions.

  25. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

  26. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering Multiple Scattering An Monte Carlo Algorithm: Initialize: Events: Step: Scatter: Score:

  27. Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering L r,v ( θ r , φ r ) = L (1) ( θ r , φ r ) + L m (22)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend