refined strong converse for the constant composition codes
play

Refined Strong Converse for the Constant Composition Codes Hao-Chung - PowerPoint PPT Presentation

Refined Strong Converse for the Constant Composition Codes Hao-Chung Cheng 1 glu 2 Bar s Nakibo 1 Department of Applied Mathematics and Theoretical Physics University of Cambridge 2 Department of Electrical and Electronics Engineering


  1. Refined Strong Converse for the Constant Composition Codes Hao-Chung Cheng 1 glu 2 Barı¸ s Nakibo˘ 1 Department of Applied Mathematics and Theoretical Physics University of Cambridge 2 Department of Electrical and Electronics Engineering Middle East Technical University ISIT 2020 arXiv:2002.11414

  2. Probability of Error in Channel Coding P ( n ) Error exponent regime e Strong converse regime Rate R C ◮ R < C : Probability of erroneous decoding decays exponentially (error exponent regime) ◮ R > C : Probability of erroneous decoding converges to one (strong converse regime) 1/22

  3. Historical Remarks on Strong Converse P ( n ) ≥ 1 − e − nE sc ( R ) Exponential strong converse: e ◮ Arimoto established an exponential strong converse bound in 1973 ◮ One-shot bound for more general channels [Aug78, She82, PV10, Nak19b] ◮ Classical-quantum channels & classical data compression with quantum side information (via the data-processing inequality of the quantum sandwiched R´ enyi divergence) [Nag01, WWY14, MO17, CHDH18b, CHDH18a] ◮ The E sc ( R ) is optimal for const. comp. codes, Gaussian channels, and DSPCs [Omu75, DK79, Ooh17] ◮ The E sc ( R ) is optimal for classical-quantum channels & classical data compression with quantum side information [MO17, MO18, CHDH18b] 2/22

  4. Question � � 1 − E ′ sp ( R ) Error exponent regime: P ( n ) n − e − nE sp ( R ) = Θ , ∀ R ∈ [ R crit , C ] 2 e for certain symmetric channels, Gaussian channels, and const. comp. codes [Eli55, Sha59, Dob62, AW14, AW19, Nak20] � e − nE sc ( R ) � n − 1 − E ′ sc ( R ) Strong converse regime: P ( n ) ≥ 1 − O ? 2 e 3/22

  5. Main Contributions 1. Refined strong converse for hypothesis testing: 1 − An − 1 2 α e − nD 1 ( w q α � w ) ≥ P 0 e ≥ 1 − An − 1 2 α e − nD 1 ( w q α � w ) e = e − nD 1 ( w q α � q ) for an α ≥ 1 and w ≺ q . provided that P 1 2. Refined strong converse for the constant composition codes in channel coding: � � n − 1 − E ′ sc ( R ) P ( n ) e − nE sc ( R ) ≥ 1 − O 2 e 3. Exponent trade-off in the error exponent saturation regime 4/22

  6. Exponents Trade-Off in Hypothesis Testing ( D 1 ( w � q ) < ∞ ) n →∞ − 1 n →∞ − 1 n ln P 0 � 1 − P 0 � lim lim n ln e e error exponent strong converse exponent n →∞ − 1 n →∞ − 1 lim n ln P 1 lim n ln P 1 D 1 ( w � q ) D 1 ( w � q ) e e D 1 ( w q α � w ) Divergence trade-off α ↑ ∞ α = 0 α = 1 D 1 ( w q α � q ) D 1 ( w q 1 � q ) = D 1 ( w � q ) 5/22

  7. Exponents Trade-Off in Hypothesis Testing ( D 1 ( w � q ) < ∞ ) � � n →∞ − 1 n →∞ − 1 n ln P 0 1 − P 0 lim lim n ln e e error exponent strong converse exponent n →∞ − 1 n ln P 1 n →∞ − 1 n ln P 1 lim lim D 1 ( w � q ) D 1 ( w � q ) e e D 1 ( w q α � w ) Divergence trade-off α ↑ ∞ α = 0 α = 1 D 1 ( w q α � q ) D 1 ( w q 1 � q ) = D 1 ( w � q ) 6/22

  8. Exponents Trade-Off in Hypothesis Testing (lim α ↑ 1 D 1 ( w q α � q ) = ∞ ) n →∞ − 1 n ln P 0 lim e D 1 ( q � w ) No strong converse regime! } ln 1 � w ac � n →∞ − 1 n ln P 1 lim e � either w ≺ q and D 1 ( w � q ) = ∞ � � � α ↑ 1 D 1 ( w q lim α � q ) = ∞ ⇔ � w ac or w ⊀ q and D 1 = ∞ � q � w ac � 7/22

  9. Exponents Trade-Off in Hypothesis Testing ( w �≺ q & lim α ↑ 1 D 1 ( w q α � q ) < ∞ ) � � � w ac � n − P 0 n →∞ − 1 n ln P 0 n →∞ − 1 lim lim n ln e e error exponent saturation D 1 ( w q 1 � w ) n →∞ − 1 n ln P 1 n →∞ − 1 n ln P 1 D 1 ( w q lim D 1 ( w q lim 1 � q ) 1 � q ) e e � � � w �≺ q & lim α ↑ 1 D 1 ( w q α ↑ 1 w q � w ac � =: w q α ↑ 1 D 1 ( w q w q � q w ac α � q ) < ∞ ⇔ lim α = 1 � = w & lim α � q )= D 1 1 8/22

  10. Exponents Trade-Off in Hypothesis Testing ( w �≺ q & lim α ↑ 1 D 1 ( w q α � q ) < ∞ ) � � � w ac � n − P 0 n →∞ − 1 n →∞ − 1 n ln P 0 lim lim n ln e e error exponent saturation D 1 ( w q 1 � w ) D 1 ( w q n →∞ − 1 n ln P 1 D 1 ( w q n →∞ − 1 n ln P 1 lim lim 1 � q ) 1 � q ) e e D 1 ( w q α � w ) Divergence trade-off D 1 ( w q 1 � w ) D 1 ( w q α � q ) D 1 ( w q 1 � q ) 8/22

  11. Layout Motivation & Our Contributions The Binary Hypothesis Testing Problem & The Refined Strong Converse Hypothesis Testing and Tilting Refined Strong Converse for Channel Coding Main Result Discussion 8/22

  12. Main Result: Refined Strong Converse for Hypothesis Testing Lemma Let w = ⊗ n t =1 w t and q = ⊗ n t =1 q t , w t , q t ∈P ( Y t ) , and let w t , ac be the component of w t that is absolutely continuous in q t . For any α ∈ (1 , ∞ ) , and any E ∈ Y n 1 satisfying q ( E ) ≤ e − D 1 ( w q α � q ) , there exists an A > 0 such that � n � � 2 α e − D 1 ( w q − An − 1 α � w ) . w ( Y n 1 \ E ) ≥ � w t , ac � t =1 ◮ The tilted distribution w q α will be introduced later ◮ When w ≺ q , � n t =1 � w t , ac � = 1 2 α e − D 1 ( w q ◮ The term n − 1 α � w ) is optimal up to a multiplicative constant; see matching bound in arXiv:2002.11414 9/22

  13. Proof Strategy How to employ the Berry–Essen theorem to obtain a refined strong converse? 1. Introduce auxiliary decision intervals for ln d w d q 2. Properly control the probability evaluated on those intervals ◮ Use change of measures by the proposed tilted distribution ◮ Apply Berry–Esseen Theorem to bound the probability on each interval ◮ Use the formula of the sum of geometric series 10/22

  14. A New Titled Distribution For w and q , it was defined as d w q d ν ) 1 − α [Nak20] d ν � e (1 − α ) D α ( w � q ) ( d w d ν ) α ( d q α ◮ Error exponent trade-off: D 1 ( w q α � w ) vs. D 1 ( w q α � q ) for α ∈ (0 , 1) However, it is not defined for w ⊀ q and α ≥ 1 � � � w q � q New definition: for α ∈ R + satisfying D α < ∞ , 1 1 � q ) � d w q � α α � e (1 − α ) D α ( w q w q d q w q d w ac 1 � 1 , d q � w ac � ◮ w q α converges in total variation to w q 1 , rather than w � � � � � � w q � q w q � q ◮ lim α ↑ 1 D 1 = D 1 instead of D 1 ( w � q ) α 1 ◮ consistent with the previous definition for α ∈ (0 , 1) Change of measure : � � �� ln d w q d q = D 1 ( w q ln d w ln d w α α � q ) + α d q − E w q , q -a.s. d q α � � �� ln d w q d w = D 1 ( w q ln d w ln d w α � w ) + ( α − 1) d q − E w q q -a.s. α d q α 11/22

  15. Proof 1 \ E ) from below given q ( E ) ≤ e − D 1 ( w q α � q ) Goal: To bound w ( Y n � � � � y n 1 : τ + κ ≤ ln d w ln d w Decision region: B κ � d q − E w q < τ + ( κ + 1) , κ ∈ Z d q α w ( Y n 1 \ E ) ≥ w ( ∪ κ B κ \ E ) � � = w ( ∪ κ B κ ) − κ ≤ 0 w ( E ∩ B κ ) − κ> 0 w ( E ∩ B κ ) � n � � = t =1 � w t , ac � − κ ≤ 0 w ( E ∩ B κ ) − κ> 0 w ( E ∩ B κ ) � α � w ) � ◮ It remains to show � κ ≤ 0 w ( E ∩ B κ ) ≈ � n − 1 2 α e − D 1 ( w q κ> 0 w ( E ∩ B κ ) = O 12/22

  16. Proof (Bounding the first term) � α � w ) � To show � n − 1 2 α e − D 1 ( w q κ ≤ 0 w ( E ∩ B κ ) = O α ( E ∩ B κ ) e − D 1 ( w q α � w ) − ( α − 1) τ − ( α − 1) κ w ( E ∩ B κ ) ≤ w q by change of measure ≤ q ( E ∩ B κ ) e − D 1 ( w q α � w ) + D 1 ( w q α � q ) + τ + α + κ by change of measure ≤ e − D 1 ( w q ∵ q ( E ) ≤ e − D 1 ( w q α � w ) + τ + α + κ α � q ) � κ ≤ 0 w ( E ∩ B κ ) ≤ c 1 e − D 1 ( w q α � w ) + τ ⇒ by the formula for the sum of geometric series Choosing τ ≈ − ln n 2 α arrives at the desired bound 13/22

  17. Proof (Bounding the second term) � α � w ) � To show � n − 1 2 α e − D 1 ( w q κ> 0 w ( E ∩ B κ ) = O α ( E ∩ B κ ) e − D 1 ( w q α � w ) − ( α − 1) τ − ( α − 1) κ w ( E ∩ B κ ) ≤ w q by change of measure ≤ c 2 n − 1 2 e − D 1 ( w q α � w ) − ( α − 1) τ − ( α − 1) κ by the Berry–Esseen Thm. � w ( E ∩ B κ ) ≤ c 3 n − 1 2 e − D 1 ( w q α � w ) +(1 − α ) τ ⇒ by the formula for the sum of geo. series κ> 0 Finally, choosing τ ≈ − ln n 2 α proves the claim 14/22

  18. Product Channels and Constant Composition Codes X n Y n Encoder Product Channel Decoder 1 1 M � M Ψ : M → X n W [1 , n ] : X n 1 → P ( Y n 1 → � 1 ) Θ : Y n M 1 (Component) Channel W : X → P ( Y ) Product Channel W [1 , n ] : X n 1 → P ( Y n 1 ) such that � n W [1 , n ] ( x n ∀ x n 1 ∈ X n 1 ) = t =1 W ( x t ) 1 . Encoding Function Ψ : M → X n 1 where M � { 1 , . . . , M } 1 → � M where � Decoding Function Θ : Y n M � { L : L ⊂ M & | L | ≤ L } � � P m e � E W [1 , n ] ( Ψ ( m )) , 1 { m / ∈ Θ (Y n 1 ) } � 1 m ∈ M P m P e � e . M Constant Composition Codes: The empirical distribution of Ψ ( m ) is the same for all m ∈ M . 15/22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend