recap vincia
play

Recap: VINCIA Plug-in to PYTHIA 8 C++ (~20,000 lines) Giele, - PowerPoint PPT Presentation

Recap: VINCIA Plug-in to PYTHIA 8 C++ (~20,000 lines) Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003 Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013 i 1 1 j i I k Based on antenna factorization j I k K -


  1. Recap: VINCIA Plug-in to PYTHIA 8 C++ (~20,000 lines) Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003 Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013 i 1 1 j i I k Based on antenna factorization j I k K - of Amplitudes (exact in both soft and collinear limits) m+1 m+1 - of Phase Space (LIPS : 2 on-shell → 3 on-shell partons, with (E,p) cons) K 1.0 Evolution Scale 0.6 0.8 0.6 Infinite family of continuously deformable Q E y jk 1.0 p T 0.4 0.8 0.2 0.8 0.2 0.2 Special cases: transverse momentum, invariant mass, energy ⌦ ↵ 0.4 0.6 0.8 0.4 0.0 y jk 0.0 0.2 0.4 0.6 0.8 1.0 m D 0.4 0.8 1.0 y ij 0.6 0.6 Improvements for hard 2 → n: “smooth ordering” & LO matching 0.8 0.2 0.4 0.2 0.6 0.0 0.0 0.2 0.4 0.6 0.8 1.0 y jk y ij 0.4 E g 0.6 Radiation functions 0.2 0.2 0.8 0.0 0.4 0.0 0.2 0.4 0.6 0.8 1.0 y ij Written as Laurent-series with arbitrary coefficients, ant i ∗ √ 2 (c) Special cases for non-singular terms: Gehrmann-Glover, MIN, MAX + Massive antenna functions for massive fermions (c,b,t) Kinematics maps Formalism derived for infinitely deformable κ 3 → 2 Special cases: ARIADNE, Kosower, + massive generalizations vincia.hepforge.org 1 P. S k a n d s

  2. One-Loop Corrections Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026 Trivial Example (for notation) : Z → qq First Order (~POWHEG) Z 0 → q ¯ q Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at Q = Q had Z Q 2 ! 1 + 2 Re[ M 0 0 M 1 ∗ ] had ∗ ] = | M 0 0 | 2 0 d Φ ant g 2 + s C A g/q ¯ q | M 0 0 | 2 q = | M 0 1 | 2 0 Born Virtual Unresolved Real ¯ | M 0 0 | 2 Markov Shower: Exclusive 2-jet rate (2 and only 2 jets), at Q = Q had Z s ! 0 | 2 ∆ ( s, Q 2 | M 0 had ) = | M 0 0 | 2 d Φ ant g 2 q + O ( α 2 1 − s C A g/q ¯ s ) Q 2 had Born Sudakov Approximate Virtual + Unresolved Real NLO Correction: Subtract and correct by difference 2 Re[ M 0 0 M 1 ∗ ] ) = ↵ s 0 q ( ✏ , µ 2 /m 2 � � 2 ⇡ 2 C F 2 I q ¯ Z ) − 4 | M 0 0 | 2 ⇣ 1 + α s ⌘ 0 | 2 → | M 0 | M 0 0 | 2 Z s ✓ ◆ Z ) + 19 π q = ↵ s d Φ ant 2 C F g 2 q ( ✏ , µ 2 /m 2 s A g/q ¯ 2 ⇡ 2 C F − 2 I q ¯ 4 0 IR Singularity Operator 2 P. S k a n d s

  3. One-Loop Corrections Ongoing work, with E. Laenen & L. Hartgring (NIKHEF) Getting Serious: second order Fixed Order: Exclusive 3-jet rate (3 and only 3 jets), at Q = Q had Z Q 2 d Φ 2 had 1 | 2 + 2 Re[ M 0 Exact → | M 0 1 M 1 ∗ | M 0 2 | 2 1 ] + d Φ 1 0 Born Virtual Unresolved Real Markov Shower: d σ q ¯ q m Z 2 → 3 Evolution q ( m 2 Z , Q 2 E ) ∆ q ¯ Q E a g/q ¯ q Q R 3 → 4 Evolution ∆ qg ( Q 2 q ( Q 2 R , 0) ∆ g ¯ R , 0) 0 1 | 2 ∆ 2 ( m 2 Approximate → (1 + V 0 ) | M 0 Z , Q 2 1 ) ∆ 3 ( Q 2 R 1 , Q 2 had ) , V 0 = α s / π 2 → 3 Evolution 3 → 4 Evolution µ R 3 P. S k a n d s

  4. Master Equation Ongoing work, with E. Laenen & L. Hartgring (NIKHEF) NLO Correction: Subtract and correct by difference A NLO = A LO (1+V 1 ) V 0 µ R � LC  2 Re[ M 0 1 M 1 ⇤ ✓ µ 2 1 ] ✓ 11 N C − 2 n F ◆ ◆ − ↵ s − ↵ s ME V 1 Z ( q, g, ¯ q ) = ln | M 0 µ 2 1 | 2 2 ⇡ 6 ⇡ PS " # Gluon Emission IR + ↵ s C A q ) + 34 Standard IR − 2 I (1) qg ( ✏ , µ 2 /s qg ) − 2 I (1) qg ( ✏ , µ 2 /s g ¯ Singularity Singularities 2 ⇡ 3 Standard " # + ↵ s n F Gluon Splitting IR − 2 I (1) qg,F ( ✏ , µ 2 /s qg ) − 2 I (1) Finite Terms q,F ( ✏ , µ 2 /s qg ) − 1 Singularity g ¯ 2 ⇡ δ A = LO Matching Z m 2 Z m 2 " + ↵ s C A Z Z Terms (finite) 8 ⇡ 2 d Φ ant A std q + 8 ⇡ 2 2 → 3 Sudakov Logs d Φ ant � A g/q ¯ q g/q ¯ 2 ⇡ Q 2 Q 2 δ A 2 → 3 Q 1 = 3-parton 1 1 Resolution Scale Z s j Z s j 2 2 # X X 8 ⇡ 2 d Φ ant (1 − O Ej ) A std 8 ⇡ 2 g/qg + d Φ ant � A g/qg 3 → 4 Emit − 0 0 O Ej = Gluon-Emission δ A 3 → 4, Emit j =1 j =1 Ordering Function 3 → 4 Z s j Z s j 2 2 " + ↵ s n F Sudakov X 8 ⇡ 2 d Φ ant (1 − O Sj ) P Aj A std X 8 ⇡ 2 q/qg + d Φ ant � A ¯ − q/qg Logs ¯ 2 ⇡ 0 0 δ A 3 → 4, Split O Sj = Gluon-Splitting j =1 j =1 Ordering Function 3 → 4 Split ◆ # − 1 s qg − s g ¯ ✓ s qg q ln , (72) 6 s qg + s g ¯ s g ¯ q q *) Note: here only Leading Color 4 P. S k a n d s

  5. Loop Corrections Ongoing work, with E. Laenen & L. Hartgring (NIKHEF) (MC) 2 : NLO Z → 2 → 3 Jets + Markov Shower Q E = 2 p T H strong L Size of NLO 0 1.75 1.5 Correction: Quark-Collinear 1.4 Hard over 3-parton Resolved g ( p j ) Phase Space - 2 1.5 q ( p k ) ¯ Markov 1.5 Evolution in: ln H y jk L Transverse - 4 2 Momentum q ( p i ) 1.75 Parameters: - 6 Scaled Invariants α S (M Z ) = 0.12 1.75 µ R = m Z y ij = ( p i · p j ) Λ QCD = Λ MS Soft Antiquark-Collinear M 2 Z - 8 → 0 when i||j - 8 - 6 - 4 - 2 0 & when E j → 0 ln H y ij L 5 P. S k a n d s

  6. Choice of µ R Ongoing work, with E. Laenen & L. Hartgring (NIKHEF) A) M Z B) p T “Typical” Fixed-Order Choice = “Typical” Shower Choice Q E = 2 p T H strong L Q E = 2 p T H strong L 0 0 1.75 1.5 1.2 1.2 1.4 1.2 1.1 µ R = m Z µ R = p Tg - 2 - 2 1.5 1.1 Λ QCD = Λ CMW 1.5 Λ QCD = Λ MS 1.2 ln H y jk L ln H y jk L - 4 - 4 1.05 2 1.75 - 6 - 6 1.75 1.1 - 8 - 8 - 8 - 6 - 4 - 2 0 - 8 - 6 - 4 - 2 0 ln H y ij L ln H y ij L Markov Evolution in: Transverse Momentum, α S (M Z ) = 0.12 6 P. S k a n d s

  7. Choice of Q Evol Ongoing work, with E. Laenen & L. Hartgring (NIKHEF) Q E = m D Q E = 2 p T H strong L 0 2 1.75 1.3 0 1.5 1.2 1.2 1.2 1.2 1.1 1.1 1.4 1.05 - 2 - 2 1.2 Markov Evolution in Markov Evolution 1.1 0.95 1.2 0.9 m D2 = 2min(s ij ,s jk ) in p TA2 = s ij s jk /s ijk ln H y jk L 1.3 ln H y jk L - 4 - 4 1.05 0.8 1.5 1.4 0.7 - 6 - 6 1.75 Missing Sudakov Too much Sudakov Modest Corrections Suppression in Suppression in 2 Everywhere Soft Region Collinear Region 0.6 1.1 - 8 - 8 - 8 - 6 - 4 - 2 0 - 8 - 6 - 4 - 2 0 ln H y ij L 1.0 1.0 ln H y ij L 0.2 Parameters: 0.6 0.8 0.8 α S (M Z ) = 0.12, 0.6 0.6 0.8 0.4 y jk y jk 0.4 p T 0.4 0.8 0.6 0.8 µ R = p TA , m D 0.6 0.2 0.2 0.2 0.4 Λ QCD = Λ CMW 0.4 0.2 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij y ij 7 P. S k a n d s

  8. Choice of Finite Terms Ongoing work, with E. Laenen & L. Hartgring (NIKHEF) MIN Antennae: MAX Antennae: δ A 3 → 4 < 0 δ A 3 → 4 > 0 Q E = 2 p T H strong L Q E = 2 p T H strong L 0 0 1.1 1.3 1.05 1.3 - 2 - 2 Small finite terms Large finite terms → Large 3 → 4 Sudakov → Small 3 → 4 Sudakov 1.1 (little Sudakov Suppr) (much Sudakov Suppr) ln H y jk L ln H y jk L - 4 - 4 1.2 1.05 - 6 - 6 Note: this just for illustration. Matching to LO matrix elements fixes δ A uniquely - 8 1.1 - 8 - 8 - 6 - 4 - 2 0 - 8 - 6 - 4 - 2 0 ln H y ij L ln H y ij L Parameters: α S (M Z ) = 0.12, µ R = p TA , Λ QCD = Λ CMW 8 P. S k a n d s

  9. O u t l o o k 1. Publish 3 papers (~ a couple of months: helicities, NLO multileg, ISR) 2. Apply these corrections to a broader class of processes, including ISR → LHC phenomenology 3. Automate correction procedure, via interfaces to one-loop codes … (goes slightly beyond Binoth Accord; for LO corrections, we currently use own interface to modified MadGraph ME’s) 4. Variations. No calculation is more precise than the reliability of its uncertainty estimate → aim for full assessment of TH uncertainties. 5. Recycle formalism for all-orders shower corrections?

  10. Phase Space Contours Evolution Variables: p ⊥ -ordering Mass-Ordering Energy-Ordering ( m 2 ⌦ m 2 ↵ ⌦ m 2 ↵ min ) ( geometric ) ( arithmetic ) 1.0 1.0 1.0 0.4 0.2 0.8 0.8 0.8 Linear in y 0.6 0.6 0.6 0.8 0.4 y jk y jk y jk 0.4 0.8 0.4 0.8 0.4 0.6 0.6 0.6 0.2 0.4 0.2 0.2 0.2 0.8 0.2 0.2 0.6 0.4 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij y ij y ij (a) Q 2 E = m 2 (b) Q 2 (c) Q 2 E = 2 E ∗ √ s = ( y ij + y jk ) s D = 2 min( y ij , y jk ) s E = 2 p ⊥ √ s = 2 √ y ij y jk s 1.0 1.0 1.0 0.8 0.6 0.8 0.8 0.8 0.2 Quadratic in y 0.6 0.6 0.6 0.6 0.8 y jk y jk y jk 0.8 0.4 0.4 0.4 0.4 0.6 0.6 0.8 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij y ij y ij E = 4 E ∗ 2 = ( y ij + y jk ) 2 s m 4 (e) Q 2 E = 4 p 2 (f) Q 2 ⊥ = 4 y ij y jk s (d) Q 2 = 4 min( y 2 ij , y 2 E = D jk ) s s 10 P. S k a n d s

  11. Consequences of Ordering Ongoing work, with E. Laenen & L. Hartgring (NIKHEF) Number of antennae restricted by ordering condition Mass-Ordering p ⊥ -ordering Energy-Ordering 1.0 1.0 1.0 1 0.8 0.8 0.8 1 Linear in y 0.6 0.6 0.6 y jk y jk y jk 0 0 0 0.4 0.4 0.4 1 0.2 0.2 0.2 1 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij y ij y ij E = 2 E ∗ √ s = ( y ij + y jk ) s (a) Q 2 E = m 2 (b) Q 2 (c) Q 2 D = 2 min( y ij , y jk ) s E = 2 p ⊥ √ s = 2 √ y ij y jk s 1.0 1.0 1.0 0.8 0.8 0.8 Quadratic in y 0.6 0.6 0.6 1 y jk y jk y jk 0 0.4 0.4 0.4 0.2 0.2 0.2 2 1 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 y ij y ij y ij E = 4 E ∗ 2 = ( y ij + y jk ) 2 s m 4 (e) Q 2 E = 4 p 2 (f) Q 2 ⊥ = 4 y ij y jk s (d) Q 2 = 4 min( y 2 ij , y 2 E = jk ) s D s 11 P. S k a n d s

  12. 12 P. S k a n d s

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend