realizing effective non hermitian time evolution with
play

Realizing effective non-Hermitian time evolution with - PowerPoint PPT Presentation

Realizing effective non-Hermitian time evolution with superconducting circuits Conference on Quantum Measurement: Fundamentals, Twists, and Applications ICTP 2019 Kater Murch Department of Physics, Washington University in St. Louis Students:


  1. Realizing effective non-Hermitian time evolution with superconducting circuits Conference on Quantum Measurement: Fundamentals, Twists, and Applications ICTP 2019 Kater Murch Department of Physics, Washington University in St. Louis Students: Mahdi Naghiloo, Maryam Abbasi Collaborators: Yogesh Joglekar (IUPUI)

  2. A Hamiltonian must be Hermitian Hamiltonian described by Hermitian operator Real eigenvalues ☞ Unitary time evolution Complete set of eigenvectors ☞ Orthonormal basis

  3. Or must it? � � Can have real eigenvalues with non-Hermitian Hamiltonian Cannonical example: � � Gain � � ! " " � � Time Parity � � ! ! " � � � � Loss � �

  4. Non-Hermitian Hamiltonian Can have real eigenvalues with non-Hermitian Hamiltonian Cannonical example: Hamiltonian Gain ! � � ! Coupling Matrix representation " � � Loss Eigenvalues:

  5. But who cares? Balanced gain and loss easily Gain ! � � achieved in classical systems ! Many experiments… Coupling " � � Loss

  6. Non-Hermitian dissipation-experiments and systems Platforms for non-Hermitian physics: coupled mechanical/electrical oscillators J Schindler et al, JPA 45 , 444029 B. Peng et al Nature Phys. C. M. Bender et al A. J. Phys. 81 , 173 10 , 394 (2014). C. Dembowski et al PRL 86 , 5 (2001). Lasing: B. Peng (14), M. Brandstetter (14), propagating acoustical/optical waves M. Kim (14), Z. Wong (16), B. Peng (16), L. Feng (14), H. Hodaei (14) Asymmetric mode switching: J. Doppler (16), C. Shi et al Nat. Commun. 7 , 11110 Topological energy A. Regensburger et al Nature A. Guo et al Phys. Rev. Lett. transfer: Xu (2016) Enhanced sensing: W. Chen (2017), H. Hodae (17)

  7. PT symmetry: 4 Key phenomena PT breaking transition from Re to Im eigenvalues (J> ɣ ) PT “un-broken” phase 1 (J< ɣ ) PT “broken” phase “Exceptional” point degeneracy (J= ɣ ) 2 Eigenvectors become degenerate 3 Enhanced sensitivity 4 Topological/non-reciprocal

  8. PT symmetric quantum systems? Open systems Non-unitary dynamics Master equations Non-Hermitian Hamiltonian Mode selective loss (effective PT symmetry)

  9. Effective non-Hermitian qubit ! $%& !"# ɣ f = 0.2 ! s -1 � ! " � *++ , � - .) / � ! ) " ɣ e = 8 ! s -1 � " � '() # ' '('1 '()0 � 2 � ' # Engineered decay rates Transmon circuit arXiv:1901.07968

  10. Effective non-Hermitian qubit Sub-manifold evolution ! given by non-Hermitian coherent Hamiltonian ! drive " � Lindblad Master # equation: Aharonov et al PRL 96, Weisskopf & Wigner ‘30

  11. Dynamics of non-Hermitian qubit Prepare in Post-select qubit Evolve under H eff qubit e-f manifold manifold ! ! ! ! " " " � � � # # # Ashida, Furukawa, Ueda Nat. Com. 2017

  12. Effective PT symmetry In matrix representation: Overall PT symmetric (EP occurs at J = ɣ /4) loss Detuned drive: Time evolution under H eff is governed by the eigenvalue difference:

  13. Effective non-Hermitian qubit overview !"# �� $ !"# �� $ ,. . /. / -. - / , - / / 0 , / 1 . � 2 �� #345$ 0 � 1 �� #234$ %&#'()* � +$ %&#'()* � +$ J< ɣ /4 J> ɣ /4 Exceptional "# is imaginary "# is real Point J J= ɣ /4 J=0

  14. Exceptional point Degeneracy: “Diabolic point” “Exceptional Point” Hamiltonian: Hermitian non-Hermitian Eigenvalues: Degenerate Degenerate Degenerate Eigenvectors: Orthogonal J< ɣ /4 J> ɣ /4 Exceptional "# is imaginary "# is real Point J J= ɣ /4 J=0

  15. Key phenomena PT breaking transition from Re to Im eigenvalues (J> ɣ ) PT “un-broken” phase 1 (J< ɣ ) PT “broken” phase “Exceptional” point degeneracy (J= ɣ ) 2 Eigenvectors become degenerate 3 Enhanced sensitivity 4 Topological/non-reciprocal

  16. Probing the PT breaking transition 1 Measure time evolution under H eff (Rabi oscillations) Prepare |f ⟩ H eff Readout 0-2 ! s -. P(f) 30 9 J (rad/ ! s) �� !"#$%& � '( ?8" �� ( : 20 >#0=85 * 10 , ;5<#0=85 . 0 . - , + * ) 2 1 0 /0123456!#$78! !" "#$%& � '( Time ( ! s)

  17. Distorted Rabi oscillations (calculation from Lindblad Master Equation) Measurement backaction P(f) from post-selection pushes toward |f ⟩ state. !"#$%& � '( Might seem surprising that we observe abrupt transition at J= ɣ /4 even though the qubit never decays in our data set.

  18. Degenerate eigenstates at the EP 2 ● For J ⪼ ɣ eigenstates are |±x ⟩ ! ● Near the EP the eigenstates |- ⟩ coalesce toward |+y ⟩ ● At the EP, one eigenstate: |+y ⟩ |- ⟩ # |- ⟩ ● Past EP, eigenstates in Y-Z |+ ⟩ plane |+ ⟩ " |+ ⟩ J J= ɣ /4 J=0

  19. Imaging eigenstates (stationary) 2 Prepare ( 훳 , ! ) H eff Readout 500 ns ! 훳 = $ /2 � ! " # +| & $% '()*+ � ,- !"# # !"! $!"# " ! % � � ./01234)5&)6758& � J J= ɣ /4 J=0

  20. Imaging eigenstates (stationary) 2 Prepare ( 훳 , ! ) H eff Readout 500 ns ! = 0 훳 = $ /2 � � ! " # +| & $% '()*+ � ,- !"# ! !" "#$%& � '( !"! $!"# ! % � � &) * � � ./01234)5&)6758& � +,-$#!$./-0! � J J= ɣ /4 J=0

  21. Non-orthogonal eigenstates 2 ! ! | | $ "# $ "# +| +| !"#$%&'" !"#$%& +| !"#$%&'()*+,-) !" .*+/0 � 12

  22. Sensing advantages with dissipation 3 Degeneracy: “Diabolic point” “Exceptional Point” Hamiltonian: Hermitian non-Hermitian Eigenvalues: Degenerate Degenerate Degenerate Eigenvectors: Orthogonal -. Response 9 �� !"#$%& � '( ?8" �� ( : >#0=85 * , ;5<#0=85 . . - , + * ) (Perturbation) /0123456!#$78! !" "#$%& � '( Wiersig PRL 2014, Chen Nature 2017, Hodaie Nature 2017

  23. Time evolution of H eff 3 P(f)/(P(f) + P(e)) Time ( ! s) ● Distorted ● Solve Lindblad ● Response to a trajectories due to Master Equation small perturbation H eff (can think of as ● J/ ɣ = 0.33 (EP ( % J/J = 0.7%) measurement back- at 0.25) action)

  24. 3 Cramér-Rao Bound For large data sets, the Cramer-Rao bound sets a limit on the mean squared deviation of some parameter d is the amount of data is an unbiased estimator of J I & is the Fisher information Quantum Fisher Information Bures distance: ' i ' f Evolve with H J ' i ' f Evolve with H J +d J Cramér 1946

  25. Quantum Fisher Information 3 Rabi interferometry ! # "

  26. Quantum Fisher Information 3 ! (calculation) � -.$ � & /0 $ ! J+dJ � -1$ � & /0 $ !"#$% � & ' ( # ! J " ! $%)*+, � &( QFI ∼ (dP f /dJ) 2

  27. Measuring the QFI near the EP 3 Prepare |e ⟩ H eff Readout 500ns Steeper P(e)/(P(e)+ P(f) slope = higher QFI P(e) Low success rate = increased J (arb units) binomial EP error Kero Lau, Aash Clerk (Nat. Com. 2018)

  28. Non-Hermitian qubit sensing summary 3 Improvement in the QFI about a perturbation to non-Hermitian Hamiltonian near EP. (In the post-selected qubit manifold) Post-selection introduces a cost due to the dissipation. Can be situations (technical noise) where there are still advantages. Also inspiration to look at non-lossy systems from a new angle. A. Jordan PRX 2014

  29. Topological features of the EP 4 !"#$ !"# �� $ %"#$ +| | ,. &"#$ ! /. -. - / , +| +| / 0 1 ! � 2 !"#$ �� #345$ %&#'()* � +$ Adiabatically tune | | parameters to encircle # the EP Non-reciprocal behavior +| | !

  30. Non-Hermitian qubit 30 Transition from imaginary to real eigenvalues 20 (J< ɣ ) PT “broken” (J> ɣ ) PT “un-broken” 10 phase phase +| � 0 2 1 0 � “Exceptional” point degeneracy (J= ɣ ) Eigenvectors not orthogonal and become degenerate � � Enhanced sensitivity � (prelim) +| | Topological/non-reciprocal features ! (theory) Decoherence! Dissipation: Lindblad vs non-Hermitian

  31. Interplay of two types of dissipation !"# �� $ !"# �� $ . ,. /. / -. - - / , / / , / 0 . 1 0 � 2 � �� #345$ 1 �� #234$ %&#'()* � +$ %&#'()* � +$ " " " � $% � &#'()* � $% � &#%'()* � � !$ !# !" !"#"$ !"#"$ # ! # !" !" #" #"# #"% $"# $"% !"# #"# #"% $"# $"% !"# &'()*+ � ,- &'()*+ � ,- (additional decoherence)

  32. Steady states from dissipation interplay Quantum state tomography after 4 ! s of evolution ���� !"./0( + ,* $ ! " # $ % & * + � ' ( ) -* ! !"#$#%& " # y bump: at the EP dissipation drives system to the single eigenstate.

  33. Summary and thanks Non-Hermitian qubit: enhanced sensing, non-reciprocal/ topological features, interplay of dissipations. Naghiloo et al 2019 arXiv:1901.07968 Collaborators Yogesh Joglekar (IUPUI) Murch group at WUSTL 2019 Mahdi Maryam Naghiloo Abbasi

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend