rayleigh b enard convection a priori estimate on the
play

Rayleigh-B enard convection: a priori estimate on the Boussinesq - PowerPoint PPT Presentation

Rayleigh-B enard convection: a priori estimate on the Boussinesq system that carry physical meaning C. Doering & M. Westdickenberg, & C. Seis, & C. Nobili, & A. Choffrut Max Planck Institute for Mathematics in the Sciences,


  1. Rayleigh-B´ enard convection: a priori estimate on the Boussinesq system that carry physical meaning C. Doering & M. Westdickenberg, & C. Seis, & C. Nobili, & A. Choffrut Max Planck Institute for Mathematics in the Sciences, Leipzig

  2. Rayleigh-B´ enard convection in the turbulent regime

  3. Rayleigh-B´ enard convection Temperature advection and diffusion Buoyancy, acceleration, and viscosity T = 0 u = 0 z = 1 1 Pr ( ∂ t u + u · ∇ u ) + ∇ p � 0 � ∂ t T + u · ∇ T − △ T = 0 = −△ u + RaT 1 ∇ · u = 0 z = 0 T = 1 u = 0 Rayleigh number Ra = α g δT h 3 Prandtl number Pr = ν , ν κ κ ... in Boussinesq approximation

  4. Beyond the Rayleigh-B´ enard instability Ra < Ra ∗ : pure diffusion, T = 1 − z , u = 0 Ra > Ra ∗ : unstable to convection rolls Ra ≫ 1: steady → periodic → “turbulent” Schlieren picture for Ra ∼ 10 9 L. Kadanoff

  5. Efficiency of heat transport: the Nusselt number Diffusion and convection � vertical heat flux � 0 � heat flux q = Tu − ∇ T, vertical heat flux = q · 1 � 0 � Nusselt number = space-time average of q · 1 z = 1 z Nu = lim t ↑∞ � t � � 0 � 1 1 dx dt ′ (0 , L ) d − 1 × (0 , 1) q · y L d − 1 1 t 0 z = 0 � �� � L

  6. Scaling of Nu in Ra and Pr ... Similarity law: Nu = f ( Ra, Pr, L ) Grossmann & Lohse ’00 Ahlers et al ’05 ... in theory and experiment

  7. First part: Upper bounds on Nu at Pr = ∞ Limitations of the background field method Second part: Upper bounds on Nu at large Pr Re only matters in boundary layer

  8. Malkus’ marginal stability argument... T = 0 , u = 0 z = 1 ∂ t T + u · ∇ T − △ T = 0 T = 0 , u = 0 ˆ z = H ˆ � 0 � −△ u + ∇ p = RaT 1 u · ˆ ∇ T − ˆ ∂ ˆ t T + ˆ △ T = 0 ∇ · u = 0 z = 0 � 0 � T = 1 , u = 0 − ˆ u + ˆ △ ˆ ∇ ˆ p = T 1 x = Ra − 1 x, t = Ra − 2 3 ˆ 3 ˆ t ˆ ∇ · ˆ u = 0 1 1 3 � u = Ra 3 ˆ u, Nu = Ra Nu z = 0 ˆ T = 1 , u = 0 ˆ .. as a rescaling

  9. Nusselt number Nu independent of height H ≫ 1 1 � 3 for Ra ≫ 1 Nu ∼ Ra ⇐ ⇒ Nu ∼ 1 for H ≫ 1 NUSSELT−ZAHL BLAU: H = 250, Nu = 0.0648, Varianz = 3.61e−04 ROT: H = 500, Nu = 0.0584, Varianz = 2.15e−04 SCHWARZ: H = 1000, Nu = 0.0545, Varianz = 1.19e−04 0.15 Simulation 0.1 (M. Zimmermann) : Nu(t) 0.05 0 100 200 300 400 500 600 700 Zeit

  10. Upper bounds on Nusselt via a priori estimates Nu � ln 2 / 3 H , • Constantin & Doering (’99): Stokes maximal regularity in L ∞ Nu � ln 1 / 3 H , • Doering & O. & Reznikoff (’06): background temperature field method Nu � ln 1 / 15 H , • O. & Seis (’11): background temperature field method • Nobili & O. (’16) exponent 1/15 optimal for background temperature field method Nu � ln 2 / 3 ln H , • O. & Seis (’11): Stokes maximal regularity in L ∞ and background temperature field method

  11. Two insights from rigorous results • Optimal background temperature profile is non-monotone stable for H 0 � log − 1 15 H 1 15 H yields Nu � log • Optimal background temperature profile has no physical meaning

  12. Notations � t � 1 0 dt ′ 1 Time & horizontal average: �·� := lim (0 , L ) d − 1 dy L d − 1 t t ↑∞ z = H z Temperat. fluctuations: θ := T − � T � y � 0 � z = 0 � �� � Vertical velocity: w := u · 1 L θ ↔ w : Stokes & no-slip b. c. � plate & clamped b. c. △ 2 w = − △ y θ, w = ∂ z w = 0 for z = 0 , H .

  13. Two representations of Nusselt number w = ∂ z w = 0 z = H Recall definition z △ 2 w = −△ y θ � H 1 Nu = 0 � Tw − ∂ z T � dz y H z = 0 w = ∂ z w = 0 Get in addition z Nu = � θw � − d dz � T � for all z , z ′ � H 0 �|∇ T | 2 � dz Nu =

  14. More flexible representation of Nusselt number τ 1 τ ( z ) with τ ( z = 0) = 1 , τ ( z = H ) = 0 z H Decompose T = τ + θ ; keep relation between θ & w Average Nu = − ∂ z � T � + � w θ � w. r. t. − dτ dz : � H � H dτ dτ Nu = dz ∂ z � T � dz − dz � w θ � dz 0 0 � H 0 �|∇ T | 2 � dz : Combine with Nu = �� H � � H � H dz ) 2 dz − 0 ( dτ dτ 0 �|∇ θ | 2 � dz + 2 Nu = dz � w θ � dz 0

  15. Optimal bound through saddle point problem � � H �� H �� � H Nu ≤ � dz ) 2 dz − 0 ( dτ dτ 0 �|∇ θ | 2 � dz + 2 Nu := min max dz � w θ � dz τ ( θ,w ) 0 τ 1 min over all τ with τ = 1 , 0 for z = 0 , H z w = ∂ z w = 0 H △ 2 w = −△ y θ max over all ( θ, w ) with w = ∂ z w = 0 Hopf’43, Nicolaenko&Scheurer&Temam’85, Constantin&Doering’92

  16. Plus I: A marginal stability criterion � H dz ) 2 dz 0 ( dτ � Nu = min τ min over all τ with τ = 1 , 0 for z = 0 , H with � H � H dτ 0 �|∇ θ | 2 � dz + 2 dz � w θ � dz ≥ 0 0 for all ( θ, w ) with △ 2 w = −△ y θ and θ = w = ∂ z w = 0 at z = 0 , H ... captures transition H ∗ to convection rolls

  17. Plus II: Amenable to horizontal Fourier transform ... � H dz ) 2 dz 0 ( dτ � Nu = min τ min over all τ with τ = 1 , 0 for z = 0 , H with � H � � 2+ � 1 � 2 dz ( k 2 − d 2 dz ( k 2 − d 2 d dz 2 ) 2 w dz 2 ) 2 w k 0 � H dz w ( k 2 − d 2 dτ dz 2 ) 2 w dz ≥ 0 + 2 0 for all ( k, w ( z ) ) with and ( k 2 − d 2 dz 2 ) 2 w = w = dw dz = 0 at z = 0 , H Busse, Howard, Chan ’71, Ierley&Kerswell&Plasting ’05 ... monitor bifurcations in optimal k as H ↑ ∞

  18. Stability of logarithmic temperature profile τ dτ Linear profile: τ = az + b , dz = a � H � H 0 a � ( ∂ z w ) 2 � dz 0 a � w θ � dz ≥ 2 light heavy z 1 b dτ Log profile: τ = ln z − a , dz = z − a Lemma 1 (Doering & O. & Reznikoff ’06) τ � H � H 1 z − a � ( ∂ z w ) 2 � dz 1 z − a � w θ � dz ≥ 2 0 0 for all ( θ, w ) with △ 2 w = −△ y θ z and w = ∂ z w = 0 at z = 0 , H

  19. Non-monotone Ansatz for background temp. profile τ 1 2 (1 + 1 z λ ln H − z ) 1 λ ≈ ln H δ = boundary layer width H z ���� ���� δ δ Theorem 1 (Doering & O. & Reznikoff ’06, O. & Seis ’11) For δ ≪ ln − 1 15 H have � H � H 0 �|∇ θ | 2 � dz + 2 dτ dz � w θ � dz ≥ 0 0 for all ( θ, w ) with △ 2 w = −△ y θ and θ = w = ∂ z w = 0 at z = 0 , H 1 � 15 H Hence Nu ≤ Nu � ln

  20. ln − 1 15 is optimal for background field method Theorem 2 (Nobili & O. ’16) � H dτ Suppose that dz dz = 1 and 0 � H � H 0 �|∇ θ | 2 � dz + 2 dτ dz � w θ � dz ≥ 0 0 for all ( θ, w ) with △ 2 w = −△ y θ and θ = w = ∂ z w = 0 at z = 0 , H . � H 1 dz ) 2 dz � ln 0 ( dτ 15 H . Then 1 � 15 H . In particular Nu ∼ ln

  21. Background field method not optimal Theorem 1 (Doering & O. & Reznikoff ’06, O. & Seis ’11) 1 � 15 H We have for H ≫ 1 : Nu � ln Theorem 2 (Nobili & O. ’16) 1 � 15 H . We have for H ≫ 1 : Nu � ln Theorem 3 (O. & Seis ’11) 1 3 ln H We have for H ≫ 1 : Nu � ln � In particular Nu ≪ Nu .

  22. Theorem 2: Characterization of stable profiles Lemma 2 (Nobili & O. ’16) Suppose that � H dτ dz � w θ � dz ≥ 0 0 for all ( θ, w ) with △ 2 w = −△ y θ and w = ∂ z w = 0 at z = 0 , H . Then τ dτ • dz ≥ 0, � ˜ � δ H dz dz � (ln ˜ dτ H dτ • δ ) dz dz δ δ z 2 δ ˜ 2 δ H for all δ ≪ ˜ H .

  23. Proof of Lemma 2: non-negativity Horizontal Fourier transform y � k : � H dz w ( k 2 − d 2 dτ dz 2 ) 2 w dz ≥ 0 0 dz = ( k 2 − d 2 for all k and all w ( z ) with w = dw dz 2 ) 2 w = 0 for z = 0 , H . � H dz w 2 dz ≥ 0 dτ dτ Limit k ↑ ∞ : = dz ≥ 0 ∀ w ⇒ 0 � H dz w d 4 dτ Limit k ↓ 0: ∀ w dz 4 w dz ≥ 0 0

  24. Proof of Lemma 2: approximate logarithmic growth � H dz w d 4 dτ Have: ∀ w dz 4 w dz ≥ 0 0 Change of variables s = ln z , w = z 2 v : large scales w d 4 ds = − dv 2 dz 4 w = v ( d ds + 2)( d ds + 1) d ds ( d − 2 v dv ds − 1) v ≈ ds , dτ dz dz = dτ ds ds � ln H ds ( − dv 2 d 2 τ dτ ds 2 = d ds z dτ Get: ∀ v ds ) ds � 0 = ⇒ dz � 0 0

  25. Two insights from rigorous results • Optimal background temperature profile is non-monotone stable for H 0 � log − 1 15 H 1 15 H yields Nu � log • Optimal background temperature profile has no physical meaning

  26. Second part: Bounds on Nu at large but finite Pr Re only matters in thermal boundary layer

  27. Recall Boussinesq approximation ... u = 0 T = 0 z = 1 1 Pr ( ∂ t u + u · ∇ u ) � 0 � ∂ t T + u · ∇ T − △ T = 0 −△ u + ∇ p = RaT 1 ∇ · u = 0 z = 0 T = 1 u = 0 Rayleigh number Ra = α g δT h 3 Prandtl number Pr = ν , ν κ κ ... at finite Prandtl number

  28. Theorem 4 (Choffrut&Nobili&0. ’15)   1 1   3 for Pr ≥ ( Ra ln Ra )   ( Ra ln Ra ) 3 Nu � 1 1   ( Ra ln Ra   ) for Pr ≤ ( Ra ln Ra ) 2 3 Pr 1 2 for all Pr Constantin & Doering ’96: Nu � Ra 1 2 3 ln 3 Ra for Pr ≫ Ra X. Wang ’07: Nu � Ra Wang’s regime Pr ≫ Ra means Re ≪ 1 in bulk; 1 3 means Re � 1 our regime Pr � Ra in thermal boundary layer

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend