ray emission from pulsars and their nebulae
play

ray emission from pulsars and their nebulae Roberta Zanin - PowerPoint PPT Presentation

ray emission from pulsars and their nebulae Roberta Zanin (Max-Planck Institut fr Kernphysik) Outline Pulsars-pulsar wind nebulae supernova remnants ray pulsars standard paradigma before Fermi-LAT launch Main results


  1. γ ray emission from pulsars and their nebulae Roberta Zanin (Max-Planck Institut für Kernphysik)

  2. Outline ü Pulsars-pulsar wind nebulae – supernova remnants ü γ –ray pulsars ü standard paradigma before Fermi-LAT launch ü Main results in the last years ü New paradigma ü pulsar wind nebulae ü current theoretical understanding ü TeV results 1 R. Zanin 35 th ICRC, Busan 2017

  3. PSR-PWN-SNR systems Van der Swaluw+03 G21.5-0.9 Chandra ASTROPHYSICS COSMIC RAY PHYSICS COSMIC RAY PHYSICS ü physics of compact objects ü factories of ü physics relativistic shocks positrons & electrons 2 R. Zanin 35 th ICRC, Busan 2017

  4. Pulsars Oblique rotator in a magnetic dipole field α à intrinsic physics ζ -> observed properties dissipate rotational energy loss spin-down luminosity the magnetosphere is plasma filled induced E extract charges from the NS ü only leptons or also ions? (Amato+2003, 2006) ideal MHD (E Ÿ B =0) & free force conditions ( ρ E+J ✕ B =0) light cylinder R LC ~10 8 cm 3 R. Zanin 35 th ICRC, Busan 2017

  5. Pulsars Oblique rotator in a magnetic dipole field α à intrinsic physics ζ -> observed properties dissipate rotational energy loss spin-down luminosity the magnetosphere is plasma filled induced E extract charges from the NS ü only leptons or also ions? (Amato+2003, 2006) ideal MHD (E Ÿ B =0) & free force conditions ( ρ E+J ✕ B =0) light cylinder R LC ~10 8 cm 3 R. Zanin 35 th ICRC, Busan 2017

  6. The standard view to account for particles acceleration, we need regions with deviations from the free-force conditions ü acceleration geometries à regions of unscreened fields: = GAPS ü inside the light cylinder ü accelerated particles emit curvature radiation ü pair production (Polar cap: Ruderman+ 75, Harding+ 78 Outer gap: Cheng+86, Romani+95 Slot gap: , Arons 83, Muslimov+ 03, 04) 4 R. Zanin 35 th ICRC, Busan 2017

  7. 50 GeV The Fermi -LAT legacy > 2500 radio PSRs young radio-laud > 200 γ -ray PSRs young radio-faint MSP 100 MeV black widow redbacks Grenier & Harding 2015 1MeV 50keV ü phase folding using radio (X-ray) timing solutions ü blind periodicity searches in Fermi data: ü GW algorithms (Plesch+2012) + Einstein@home ü mostly radio-quiet (Clark+2017) + few MSP (Clark+2016) ü radio follow-up of Fermi unidentified sources 6

  8. 2 classes of γ -ray pulsars: 50 GeV young and millisecond 100 MeV YOUNG PULSARS ü radio loudness/quiteness ü not an intrinsic 1MeV property, but a function of the viewing angle ü larger Ė than radio: 50keV just a selection effect ü 10 11 <B NS <10 14 G credits to Harding 7 R. Zanin 35 th ICRC, Busan 2017

  9. 2 classes of γ -ray pulsars: 50 GeV young and millisecond 100 MeV YOUNG PULSARS ü radio loudness/quiteness ü not an intrinsic 1MeV property, but a function of the viewing angle ü larger Ė than radio: 50keV just a selection effect ü 10 11 <B NS <10 14 G MILLISECOND PULSARS ü older ü ms P spun up by accretion credits to Harding from a binary companion ü 10 8 <B NS <10 11 G ü 50% of the known MSP 7 R. Zanin 35 th ICRC, Busan 2017

  10. 2 classes of γ -ray pulsars: 50 GeV young and millisecond 100 MeV YOUNG PULSARS ü radio loudness/quiteness ü not an intrinsic 1MeV property, but a function of the viewing angle ü larger Ė than radio: 50keV just a selection effect ü 10 11 <B NS <10 14 G Same variety of observables despite the MILLISECOND PULSARS differences in B, Ė ü older ü ms P spun up by accretion from a binary companion ü 10 8 <B NS <10 11 G ü 50% of the known MSP 7 R. Zanin 35 th ICRC, Busan 2017

  11. 50 GeV Luminosities More efficient after 10 4 -10 6 yr 100 MeV 1MeV 50keV Grenier+2015 Large part of the MSPs are efficient emitters magnetosphere is free-force ( η >10%) (pair production) ü large B at LC 8 R. Zanin 35 th ICRC, Busan 2017

  12. 50 GeV High-altitude emission The experimental proofs: ü atlases of lightcurves as a function of α & ζ per each model 100 MeV (Watters+2009,2010, Pierbattista+2012,2015) ü the double-peak lightcurves better fitted by high-altitude emission models 1MeV ü 50keV ü Γ =-1.5±0.2; ü E c =2.9±2.0 GeV ü b<1 à caustic outer gaps ü δ - Δ anti-correlation (Romani+1995, LAT coll. 2010, Watters+2009, 2010…) 9 R. Zanin 35 th ICRC, Busan 2017

  13. 50 GeV High-altitude emission The experimental proofs: ü atlases of lightcurves as a function of α & ζ per each model 100 MeV (Watters+2009,2010, Pierbattista+2012,2015) ü the double-peak lightcurves better fitted by high-altitude emission models 1MeV ü 50keV ü Γ =-1.5±0.2; ü E c =2.9±2.0 GeV ü b<1 à caustic outer gaps ü δ - Δ anti-correlation (Romani+1995, LAT coll. 2010, Fermi-LAT coll. 2010, Djannati-Atai 2017 Watters+2009, 2010…) 9 R. Zanin 35 th ICRC, Busan 2017

  14. 50 GeV High-altitude emission The experimental proofs: ü atlases of lightcurves as a function of α & ζ per each model 100 MeV (Watters+2009,2010, Pierbattista+2012,2015) ü the double-peak lightcurves better fitted by high-altitude emission models 1MeV ü 50keV ü Γ =-1.5±0.2; ü E c =2.9±2.0 GeV ü b<1 à caustic outer gaps ü δ - Δ anti-correlation (Romani+1995, LAT coll. 2010, Watters+2009, 2010…) 9 R. Zanin 35 th ICRC, Busan 2017

  15. High-altitude emission, 50 GeV but … not always ü γ -ray leading the radio peak 100 MeV lightcurves require polar cap-like regions 1MeV ü too many observed high- Ė 50keV no model can account for the complete variety of lightcurves (Grenier+ 2015, Harding2016,) ü phase-resolved spectra show: ü the peak emission L γ ∞ Ė 1/2 ü the bridge emission with L γ ∞ Ė regions of both high- and low- multiplicity (Renault+2016) 10 R. Zanin 35 th ICRC, Busan 2017

  16. 50 GeV Soft γ -ray emission ü a new population? only 18! (Kuiper+2015) 100 MeV ü young: τ <50 kyr ü Ė > 4 x 10 36 erg/s ü mainly 1 broad peak LC 1MeV ü SED peaking at 10 MeV ü 7/18 are LAT PSRs 50keV ü the remaining are the high- Ė missed by LAT Kuiper+2015 ü synchrotron emission from magnetic pairs (Lin+2009,Wang+2013) ü no HE emission just a geometrical specific case ( α ≅ς & α <30 ) (Wang+2013,2015) 11 R. Zanin 35 th ICRC, Busan 2017

  17. A new spectral component at 50 GeV very high energies ü the Crab pulsar shows a new spectral component up to hundreds of GeV (VERITAS coll 2011, MAGIC coll. 2011, 2012, 2014, Richards+2015) 100 MeV ü one single component above 10 GeV to TeV , ü cutoff > 700 GeV MAGIC coll. 2016 1MeV (MAGIC coll. 2016) 50keV 12 R. Zanin 35 th ICRC, Busan 2017

  18. A new spectral component at 50 GeV very high energies ü the Crab pulsar shows a new spectral component up to hundreds 100 MeV of GeV (VERITAS coll 2011, MAGIC coll. 2011, 2012, 2014, Richards+2015) ü one single component above 10 GeV to TeV , MAGIC coll. 2016 ü harder for P2 1MeV ü cutoff > 700 GeV (MAGIC coll. 2016) 50keV ü inverse Compton radiation close/beyond the LC (Lyutikov+2012,Hirotani+2015, Petrí2012, Mochol+2015, Bogovalov +2000, Aharonian+2012) 12 R. Zanin 35 th ICRC, Busan 2017

  19. 50 GeV Flux variability in pulsars Pulsars are not steady at lower energies: ü in radio: glitches (starquakes or superfluids), giant pulses 100 MeV ü intermittent radio pulsars and transitional pulsars (Torres+2016) First switch mode in a γ -ray pulsar: J2021+4026 20% flux drop ü increase in spin 1MeV ü down rate change in the ü 50keV pulsar profile decrease energy ü cutoff (Allaford+2013, Ng+2016) Ng+2016 Pdot glitch ü a re-arrangement of the B structure à α change (Allaford+2013) 13 R. Zanin 35 th ICRC, Busan 2017

  20. Summarizing… ü Soft γ -ray emission from low-altitudes only for high- Ė ü high-energy emission come from high-altitude regions ü High-energy efficiency is increasing with time (L γ ∞ Ė 1/2 ) ü none of the local emission models can account for the variety of observables: a combination of them would work? ü Some MSPs have emission from polar caps regions ü the Crab pulsar has a new spectral component reaching TeV à inverse Compton emission beyond the LC? ü PSRs can be variable sources with flux and spectral changes related to changes of a , thus glitches?? 14 R. Zanin 35 th ICRC, Busan 2017

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend