rational matrix factorizations via defect functors
play

Rational matrix factorizations via defect functors based on - PowerPoint PPT Presentation

Rational matrix factorizations via defect functors based on 1005.2117 and 1112.XXXX Nicolas Behr Humboldt-Universitt zu Berlin/AEI in collaboration with Stefan Fredenhagen Max-Planck-Institute for Gravitational Physics (AEI) Maxwell


  1. Rational matrix factorizations via defect functors based on 1005.2117 and 1112.XXXX Nicolas Behr Humboldt-Universität zu Berlin/AEI in collaboration with Stefan Fredenhagen Max-Planck-Institute for Gravitational Physics (AEI) Maxwell Institute, October 12th 2011

  2. A little RCFT background Bulk correspondence Introducing (B-type) boundaries Data for boundary KS models Boundary LG theory data Preliminary version of RCFT/LG boundary correspondnce Defect functors

  3. WZNW models Witten, 1984 G k ◮ class of CFTs that describe the motion of a string on a group manifold ◮ G Lie group, k ∈ Z > 0 ”level” of the WZNW model ◮ action is of the form S WZNW = S kinetic + k · S WZ ◮ extraordinary features: ⊲ algebra of conserved currents = affine Lie algebra � g k ⊲ primary fields labeled by highest weight representations of g k ⇒ finite number of primary fields, i.e. these theories are examples of rational CFTs

  4. From WZNW to Kazama-Suzuki models ◮ Construction: Kazama and Suzuki, 1989 supersymmetrize gauge subgroup 1. G k − − − − − − − − − → N = 1 version − − − − − − − − − → WZNW coset 2. for G / H Hermitean Symmetric Space (HSS) ⇒ KS-model : G k H × SO ( 2 d ) 1 � �� � Majorana-fermions with: ⊲ G simple compact Lie group ⊲ k level of the corresponding affine Lie algebra � g k ⊲ H ⊂ G regularly embedded subgroup (i.e. rk G = rk H ) ⊲ 2 d = dim G − dim H Note: the Majorana-fermions are realized in "bosonized form", i.e. as a so ( 2 d ) 1 WZNW-model ◮ Motivation: provides a large class of N = ( 2 , 2 ) rational SCFTs

  5. Grassmannian Kazama-Suzuki models SU ( n + 1 ) k / U ( n ) SU ( n + k ) 1 × SO ( 2 nk ) 1 = SU ( n + 1 ) k × SO ( 2 n ) 1 ∼ SU ( n ) k + 1 × SU ( k ) n + 1 × U ( 1 ) SU ( n ) k + 1 × U ( 1 ) ◮ Note: we use the diagram embedding SU ( n + 1) . . . SU ( n )

  6. Grassmannian Kazama-Suzuki models SU ( n + 1 ) k / U ( n ) SU ( n + k ) 1 × SO ( 2 nk ) 1 = SU ( n + 1 ) k × SO ( 2 n ) 1 ∼ SU ( n ) k + 1 × SU ( k ) n + 1 × U ( 1 ) SU ( n ) k + 1 × U ( 1 ) ◮ Note: we use the diagram embedding SU ( n + 1) . . . SU ( n ) � h ζ � 0 ∈ SU ( n + 1 ) h ∈ SU ( n ) , ζ ∈ U ( 1 ) i ( h , ζ ) = ζ − n 0 Since i ( ξ − 1 1 , ξ ) = 1 for ξ n = 1, " H ⊂ G k " only if we quotient by the Z n action: � � U ( n ) = SU ( n ) × U ( 1 ) / Z n ⇒ field identifications!

  7. SU ( n + 1 ) k / U ( n ) ≡ SU ( n + 1 ) k × SO ( 2 n ) 1 SU ( n ) k + 1 × U ( 1 ) ◮ highest weight labels: ( Λ , Σ ; λ , µ ) ���� ���� ���� ���� su ( n + 1 ) k so ( 2 d ) 1 su ( n ) k + 1 u ( 1 ) k ∗ where the so ( 2 d ) 1 for any d can take values ⊲ Σ = 0 , v : Neveu-Schwarz sector ⊲ Σ = s , s Ramond sector

  8. SU ( n + 1 ) k / U ( n ) ≡ SU ( n + 1 ) k × SO ( 2 n ) 1 SU ( n ) k + 1 × U ( 1 ) ◮ highest weight labels: ( Λ , Σ ; λ , µ ) ���� ���� ���� ���� su ( n + 1 ) k so ( 2 d ) 1 su ( n ) k + 1 u ( 1 ) k ∗ where the so ( 2 d ) 1 for any d can take values ⊲ Σ = 0 , v : Neveu-Schwarz sector ⊲ Σ = s , s Ramond sector ◮ non-trivial common center Z = i − 1 ( Z SU ( n + 1 ) ) of the numerator and denominator theory ⇒ cyclic group Z n ( n + 1 ) (simple currents) G id

  9. SU ( n + 1 ) k / U ( n ) ≡ SU ( n + 1 ) k × SO ( 2 n ) 1 SU ( n ) k + 1 × U ( 1 ) ◮ highest weight labels: ( Λ , Σ ; λ , µ ) ���� ���� ���� ���� su ( n + 1 ) k so ( 2 d ) 1 su ( n ) k + 1 u ( 1 ) k ∗ where the so ( 2 d ) 1 for any d can take values ⊲ Σ = 0 , v : Neveu-Schwarz sector ⊲ Σ = s , s Ramond sector ◮ non-trivial common center Z = i − 1 ( Z SU ( n + 1 ) ) of the numerator and denominator theory ⇒ cyclic group Z n ( n + 1 ) (simple currents) G id ◮ labels are restricted by Gepner, 1989; Lerche et al., 1989; Moore and Seiberg, 1989 ⊲ identification rules via action of G id , Schellekens and Yankielowicz, 1989, 1990 generated by the simple current J 0 = ( J n + 1 , v ; J n , k + n ) (Λ , Σ; λ, µ ) ∼ J m 0 (Λ , Σ; λ, µ ) ∀ m ∈ Z ⊲ selection rules: monodromy charges of the numerator and denominator parts should be equal ! Q J n + 1 (Λ) + Q v (Σ) = Q J n ( λ ) + Q k + n ( µ ) with Q J ( φ ) = h J + h φ − h J φ mod 1

  10. A little RCFT background Bulk correspondence Introducing (B-type) boundaries Data for boundary KS models Boundary LG theory data Preliminary version of RCFT/LG boundary correspondnce Defect functors

  11. choice of W Gepner 1991: KS model − − − − → LG model Idea: { ring of chiral prim. fields } ↔ fusion ring ◮ chiral primary fields: h = q 2 and h = q 2 ◮ OPE of chiral primary fields: 1 Φ( z )Υ( z ′ ) ∼ . . . + ( z − z ′ ) h Φ + h Υ − h ΦΥ (ΦΥ)( z ) + . . .

  12. choice of W Gepner 1991: KS model − − − − → LG model Idea: { ring of chiral prim. fields } ↔ fusion ring ◮ chiral primary fields: h = q 2 and h = q 2 ◮ OPE of chiral primary fields: 1 Φ( z )Υ( z ′ ) ∼ . . . + ( z − z ′ ) h Φ + h Υ − h ΦΥ (ΦΥ)( z ) + . . . ◮ since h ΦΥ ≥ ( q Φ + q Υ ) / 2 = h Φ + h Υ , we obtain, rescaling coordinates by λ and taking the limit λ → ∞ : � (ΦΥ)( z ) , if ΦΥ is a cpf z ′ → z Φ( z )Υ( z ′ ) = Φ( z )Υ( z ) := lim 0 else ⇒ ring of chiral primary fields

  13. choice of W Gepner 1991: KS model − − − − → LG model Idea: { ring of chiral prim. fields } ↔ fusion ring ◮ chiral primary fields: h = q 2 and h = q 2 ◮ OPE of chiral primary fields: 1 Φ( z )Υ( z ′ ) ∼ . . . + ( z − z ′ ) h Φ + h Υ − h ΦΥ (ΦΥ)( z ) + . . . ◮ since h ΦΥ ≥ ( q Φ + q Υ ) / 2 = h Φ + h Υ , we obtain, rescaling coordinates by λ and taking the limit λ → ∞ : � (ΦΥ)( z ) , if ΦΥ is a cpf z ′ → z Φ( z )Υ( z ′ ) = Φ( z )Υ( z ) := lim 0 else ⇒ ring of chiral primary fields ◮ Gepner: cpf ring is the same as a truncation of the fusion ring C Λ 1 × C Λ 2 = f ( su ( n + 1 )) Λ f ( su ( n )) P Λ δ ( Q − Q 1 − Q 2 ) C Λ Λ 1 Λ 2 P Λ 1 P Λ 2

  14. choice of W Gepner 1991: KS model − − − − → LG model Idea: { ring of chiral prim. fields } ↔ fusion ring ◮ chiral primary fields: h = q 2 and h = q 2 ◮ OPE of chiral primary fields: 1 Φ( z )Υ( z ′ ) ∼ . . . + ( z − z ′ ) h Φ + h Υ − h ΦΥ (ΦΥ)( z ) + . . . ◮ since h ΦΥ ≥ ( q Φ + q Υ ) / 2 = h Φ + h Υ , we obtain, rescaling coordinates by λ and taking the limit λ → ∞ : � (ΦΥ)( z ) , if ΦΥ is a cpf z ′ → z Φ( z )Υ( z ′ ) = Φ( z )Υ( z ) := lim 0 else ⇒ ring of chiral primary fields ◮ Gepner: cpf ring is the same as a truncation of the fusion ring C Λ 1 × C Λ 2 = f ( su ( n + 1 )) Λ f ( su ( n )) P Λ δ ( Q − Q 1 − Q 2 ) C Λ Λ 1 Λ 2 P Λ 1 P Λ 2 ◮ Our paper: explicit computation of the SU ( 3 ) k / U ( 2 ) fusion ring via relation generating potential ⇒ W k ( y 1 , y 2 )

  15. What is a Landau-Ginzburg theory? bulk LG-Action: a theory of chiral scalar superfields � � � � d 2 zd 4 θ K (Φ , Φ) + d 2 z d 2 θ W (Φ) + c . c . S LG = with: ⊲ K (Φ , Φ) Kähler potential ⊲ W (Φ) superpotential ⊲ theory flows to CFT in IR ⇔ W (Φ) is quasihomogeneous: W ( e i λ q i Φ i ) = e 2 i λ W (Φ i ) ∀ λ ∈ C

  16. What is a Landau-Ginzburg theory? bulk LG-Action: a theory of chiral scalar superfields � � � � d 2 zd 4 θ K (Φ , Φ) + d 2 z d 2 θ W (Φ) + c . c . S LG = with: ⊲ K (Φ , Φ) Kähler potential ⊲ W (Φ) superpotential ⊲ theory flows to CFT in IR ⇔ W (Φ) is quasihomogeneous: W ( e i λ q i Φ i ) = e 2 i λ W (Φ i ) ∀ λ ∈ C ◮ Question : How do we choose W (Φ i ) ? Answer : for our purposes (Grassmannian Kazama-Suzuki models), employ Gepner’s method, i.e. use the polynomial W (Φ i ) such that = Jac W (Φ i ) := C [Φ i ] chiral ring of KS model � � ∂ i W � , which implies that a given chiral primary state Λ cp is associated to some explicit polynomial � U Λ (Φ i ) ∈ Jac W (Φ i ) .

  17. A little RCFT background Bulk correspondence Introducing (B-type) boundaries Data for boundary KS models Boundary LG theory data Preliminary version of RCFT/LG boundary correspondnce Defect functors

  18. From bulk to boundary KS model ◮ bulk Hilbert space: "almost diagonal" modular invariant � H = H [Λ , Σ; λ,µ ] ⊗ H [Λ , Σ + ; λ,µ ] [Λ , Σ; λ,µ ]

  19. From bulk to boundary KS model ◮ bulk Hilbert space: "almost diagonal" modular invariant � H = H [Λ , Σ; λ,µ ] ⊗ H [Λ , Σ + ; λ,µ ] [Λ , Σ; λ,µ ] ◮ boundary Hilbert space: via folding trick ⇒ theory on upper half plane w/ bdry at the real line z = z , where we demand B-type gluing conditions: ± ( z ) G ± ( z ) = η G T ( z ) = T ( z ) J ( z ) = J ( z ) Imz = Imz with: η a sign corresponding to the choice of a spin structure, i.e. of GSO projection

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend