rate equations for graphs
play

Rate Equations for Graphs Vincent Danos 1 Tobias Heindel 2 Ricardo - PowerPoint PPT Presentation

Rate Equations for Graphs Vincent Danos 1 Tobias Heindel 2 Ricardo Honorato-Zimmer 3 Sandro Stucki 4 1 CNRS/ENS-PSL/INRIA, France 2 TU Berlin, Germany 3 CINV, Chile 4 GU/Chalmers, Sweden Virtual CMSB 2020 Konstanz 23 Sep 2020


  1. Rate Equations for Graphs Vincent Danos 1 Tobias Heindel 2 Ricardo Honorato-Zimmer 3 Sandro Stucki 4 1 CNRS/ENS-PSL/INRIA, France 2 TU Berlin, Germany 3 CINV, Chile 4 GU/Chalmers, Sweden Virtual CMSB 2020 – Konstanz – 23 Sep 2020 sandro.stucki@gu.se @stuckintheory 1

  2. Mean field approximations (MFAs) Question What is the expected value E ( F ) of some observable F on a CTMC? 2

  3. Mean field approximations (MFAs) Photo: J Ligero & I Barrios 2013 (Wikipedia). 2

  4. Mean field approximations (MFAs) Question What is the expected value E ( F ) of some observable F on a CTMC? Example (reproduction) k α 2 − − ⇀ 3 2

  5. Mean field approximations (MFAs) Question What is the expected value E ( F ) of some observable F on a CTMC? Example (reproduction) k α 2 B − − ⇀ 3 B 2

  6. Mean field approximations (MFAs) Question What is the expected value E ( F ) of some observable F on a CTMC? Example (reproduction) k α 2 B − − ⇀ 3 B The function [ B ] counts the number of occurrences of B . d dt E [ B ] = k α E [ 2 B ] = k α E ([ B ]([ B ] − 1 )) (meanfield) 2

  7. Mean field approximations (MFAs) Question What is the expected value E ( F ) of some observable F on a CTMC? Example (reproduction) k α 2 B − − ⇀ 3 B The function [ B ] counts the number of occurrences of B . d dt E [ B ] = k α E [ 2 B ] = k α E ([ B ]([ B ] − 1 )) (meanfield) ≃ k α E ([ B ][ B ]) ≃ k α E [ B ] E [ B ] (approximation) 2

  8. Mean field approximations (MFAs) Question What is the expected value E ( F ) of some observable F on a CTMC? Example (reproduction) k α 2 B − − ⇀ 3 B The function [ B ] counts the number of occurrences of B . d dt E [ B ] = k α E [ 2 B ] = k α E ([ B ]([ B ] − 1 )) (meanfield) ≃ k α E ([ B ][ B ]) ≃ k α E [ B ] E [ B ] (approximation) dt [ B ] ≃ k α [ B ] 2 d (thermodynamic limit) 2

  9. CRNs are Graph Transformation Systems (GTSs) Reaction/rule Observable k α − − ⇀ B := 3

  10. CRNs are Graph Transformation Systems (GTSs) Reaction/rule Observable k α − − ⇀ B := MFA/Rate equation d = dt d dt [ B ] = 3

  11. CRNs are Graph Transformation Systems (GTSs) Reaction/rule Observable k α − − ⇀ B := MFA/Rate equation d = − k α + · · · dt d dt [ B ] = − k α [ 2 B ] + · · · 3

  12. CRNs are Graph Transformation Systems (GTSs) Reaction/rule Observable k α − − ⇀ B := MFA/Rate equation d = − 2 k α + · · · dt d dt [ B ] = − 2 k α [ 2 B ] + · · · 3

  13. CRNs are Graph Transformation Systems (GTSs) Reaction/rule Observable k α − − ⇀ B := MFA/Rate equation d = − 2 k α + k α + · · · dt d dt [ B ] = − 2 k α [ 2 B ] + k α [ 2 B ] + · · · 3

  14. CRNs are Graph Transformation Systems (GTSs) Reaction/rule Observable k α − − ⇀ B := MFA/Rate equation d = − 2 k α + 2 k α + · · · dt d dt [ B ] = − 2 k α [ 2 B ] + 2 k α [ 2 B ] + · · · 3

  15. CRNs are Graph Transformation Systems (GTSs) Reaction/rule Observable k α − − ⇀ B := MFA/Rate equation d = − 2 k α + 3 k α dt d dt [ B ] = − 2 k α [ 2 B ] + 3 k α [ 2 B ] 3

  16. CRNs are Graph Transformation Systems (GTSs) Reaction/rule Observable k α − − ⇀ B := MFA/Rate equation d = k α dt d dt [ B ] = k α [ 2 B ] 3

  17. CRNs are Graph Transformation Systems (GTSs) Reaction/rule Observable k α − − ⇀ B := MFA/Rate equation d = k α ≃ k α dt dt [ B ] = k α [ 2 B ] ≃ k α [ B ] 2 d 3

  18. Bunnies with families Rules k β k γ − − ⇀ − − ⇀ Observables B := C := S := 4

  19. Bunnies with families Rules k β k γ − − ⇀ − − ⇀ Observables B := C := S := MFA/Rate equation d = dt d dt [ B ] = 4

  20. Bunnies with families Rules k β k γ − − ⇀ − − ⇀ Observables B := C := S := MFA/Rate equation d = k β + · · · dt d dt [ B ] = k β [ 2 B ] + · · · 4

  21. Bunnies with families Rules k β k γ − − ⇀ − − ⇀ Observables B := C := S := MFA/Rate equation d = k β + k γ dt d dt [ B ] = k β [ 2 B ] + k γ [ C ] 4

  22. Bunnies with families Rules k β k γ − − ⇀ − − ⇀ Observables B := C := S := MFA/Rate equation d ≃ k β + k γ dt dt [ B ] ≃ k β [ B ] 2 + k γ [ C ] d 4

  23. Bunnies with families (cont.) Rule Observable k β − − ⇀ C := 5

  24. Bunnies with families (cont.) Rule Observable k β − − ⇀ C := MFA/Rate equation d = dt d dt [ C ] = 5

  25. Bunnies with families (cont.) Rule Observable k β − − ⇀ C := Refinement MFA/Rate equation d = dt d dt [ C ] = 5

  26. Bunnies with families (cont.) Rule Observable k β − − ⇀ C := Refinement k β − − ⇀ MFA/Rate equation d = − k β + · · · dt d dt [ C ] = − k β [ C ] + · · · 5

  27. Bunnies with families (cont.) Rule Observable k β − − ⇀ C := Refinement MFA/Rate equation d = − k β + · · · dt d dt [ C ] = − k β [ C ] + · · · 5

  28. Bunnies with families (cont.) Rule Observable k β − − ⇀ C := Refinement k β − − ⇀ MFA/Rate equation d = − k β − k β + · · · dt d dt [ C ] = − k β [ C ] − k β [ F 0 ] + · · · 5

  29. Interlude: minimal gluings (overlaps)   ,            , ,      ∗ = , ,              , ,    6

  30. Interlude: minimal gluings (overlaps)   ,            , ,      ∗ = , ,              , ,    The set of MGs grows quickly, even for small graphs. � � � � � � � � ∗ � = 44 ∗ � = 101 � � � � � � � � � � � � � = 381 ∗ � � � � � 6

  31. Case 1: irrelevant MGs Rule Observable k β C := − − ⇀ MFA/Rate equation d = − k β − k β + · · · dt d dt [ C ] = − k β [ C ] − k β [ F 0 ] + · · · 7

  32. Case 1: irrelevant MGs Rule Observable k β C := − − ⇀ Refinement MFA/Rate equation d = − k β − k β + · · · dt d dt [ C ] = − k β [ C ] − k β [ F 0 ] + · · · 7

  33. Case 1: irrelevant MGs Rule Observable k β C := − − ⇀ Refinement k β − − ⇀ MFA/Rate equation d = − k β − k β + k β + · · · dt d dt [ C ] = − k β [ C ] − k β [ F 0 ] + k β [ C ] + · · · 7

  34. Case 1: irrelevant MGs Rule Observable k β C := − − ⇀ Refinement k β − − ⇀ MFA/Rate equation d = − k β + · · · dt d dt [ C ] = − k β [ F 0 ] + · · · 7

  35. Case 1: irrelevant MGs Rule Observable k β C := − − ⇀ Refinement MFA/Rate equation d = − k β + · · · dt d dt [ C ] = − k β [ F 0 ] + · · · 7

  36. Case 1: irrelevant MGs Rule Observable k β C := − − ⇀ Refinement k β − − ⇀ MFA/Rate equation d = − k β + k β + · · · dt d dt [ C ] = − k β [ F 0 ] + k β [ F 0 ] + · · · 7

  37. Case 1: irrelevant MGs Rule Observable k β C := − − ⇀ Refinement k β − − ⇀ MFA/Rate equation d = · · · dt d dt [ C ] = · · · 7

  38. Case 2: underivable MGs (RHS only) Rule Observable k β C := − − ⇀ MFA/Rate equation d = · · · dt d dt [ C ] = · · · 8

  39. Case 2: underivable MGs (RHS only) Rule Observable k β C := − − ⇀ Refinement MFA/Rate equation d = · · · dt d dt [ C ] = · · · 8

  40. � Case 2: underivable MGs (RHS only) Rule Observable k β C := − − ⇀ Refinement k β − − ⇀ MFA/Rate equation d = · · · dt d dt [ C ] = · · · 8

  41. � Case 2: underivable MGs (RHS only) Rule Observable k β C := − − ⇀ Refinement k β − − ⇀ MFA/Rate equation d = · · · dt d dt [ C ] = · · · 8

  42. Case 3: relevant derivable MGs Rule Observable k β C := − − ⇀ MFA/Rate equation d = · · · dt d dt [ C ] = · · · 9

  43. Case 3: relevant derivable MGs Rule Observable k β C := − − ⇀ Refinement MFA/Rate equation d = · · · dt d dt [ C ] = · · · 9

  44. Case 3: relevant derivable MGs Rule Observable k β C := − − ⇀ Refinement k β − − ⇀ MFA/Rate equation d = k β + · · · dt d dt [ C ] = k β [ 2 B ] + · · · 9

  45. Case 3: relevant derivable MGs Rule Observable k β C := − − ⇀ Refinement k β − − ⇀ MFA/Rate equation d = 2 k β + · · · dt d dt [ C ] = 2 k β [ 2 B ] + · · · 9

  46. Case 3: relevant derivable MGs Rule Observable k γ C := − − ⇀ Refinement MFA/Rate equation d = 2 k β + · · · dt d dt [ C ] = 2 k β [ 2 B ] + · · · 9

  47. Case 3: relevant derivable MGs Rule Observable k γ C := − − ⇀ Refinement k γ − − ⇀ MFA/Rate equation d = 2 k β + k γ + · · · dt d dt [ C ] = 2 k β [ 2 B ] + k γ [ C ] + · · · 9

  48. Case 3: relevant derivable MGs Rule Observable k γ C := − − ⇀ Refinement k γ − − ⇀ MFA/Rate equation d = 2 k β + 2 k γ dt d dt [ C ] = 2 k β [ 2 B ] + 2 k γ [ C ] 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend