randomized strategies for
play

Randomized Strategies for Cardinality Robustness in the Knapsack - PowerPoint PPT Presentation

Randomized Strategies for Cardinality Robustness in the Knapsack Problem Yusuke Kobayashi University of Tsukuba Kenjiro Takazawa Kyoto University ANALCO, Arlington, Virginia, USA Jan 11, 2016 Knapsack Problem 2 Item set:


  1. Randomized Strategies for Cardinality Robustness in the Knapsack Problem Yusuke Kobayashi University of Tsukuba Kenjiro Takazawa Kyoto University ANALCO, Arlington, Virginia, USA Jan 11, 2016

  2. Knapsack Problem 2 β€’ Item set: 𝐹 π‘₯ 𝑓 β€’ Profit: π‘ž 𝑓 β‰₯ 0 ( 𝑓 ∈ 𝐹 ) π‘ž 𝑓 = 100 β€’ Weight: π‘₯ 𝑓 β‰₯ 0 ( 𝑓 ∈ 𝐹 ) 20 60 80 β€’ Capacity: 𝐷 β‰₯ 0 70 50 20 50  Family of feas. sets β„± = {π‘Œ βŠ† 𝐹: π‘₯(π‘Œ) ≀ 𝐷} 𝐷 π‘₯ π‘Œ = βˆ‘ π‘“βˆˆπ‘Œ π‘₯ 𝑓  Problem 80 70 π‘Œ = π‘ž π‘Œ = βˆ‘ π‘“βˆˆπ‘Œ π‘ž 𝑓 maximize π‘ž(π‘Œ) 20 𝑍 = 100 subject to π‘Œ ∈ β„± 60 50 50 οƒ˜ NP-hard π‘Ž = οƒ˜ FPTAS

  3. Cardinality Robustness 3  Cardinality constraint |𝒀| ≀ 𝒍 is given after choosing π‘Œ οƒ˜ π‘Œ 𝑙 : expensive ≀ 𝑙 items in π‘Œ οƒ˜ OPT 𝑙 : optimal sol. Def π‘Œ ∈ β„±, 0 < 𝛽 ≀ 1 100 οƒ˜ π‘Œ is 𝜷 - robust def βˆ€π’, 𝒒(𝒀 𝒍 ) β‰₯ 𝜷 βˆ™ 𝒒 OPT 𝒍 20 60 80 70 50 𝒒 𝒀 𝒍 οƒ˜ robustness ≝ 𝐧𝐣𝐨 20 50 𝒒 𝐏𝐐𝐔 𝒍 𝒍 𝐷 π‘ž(π‘Œ 1 ) = 80 π‘ž OPT 1 = 100 80 70 π‘Œ = π‘ž OPT 2 = 150 π‘ž(π‘Œ 2 ) = 150 𝑍 = 100 20 π‘ž OPT 3 = 160 π‘ž(π‘Œ 3 ) = 150 60 50 50 … π‘Ž = …  Robustness = 0.8

  4. Contents 4  Introduction : Robust knapsack problem  Related Work οƒ˜ Hassin, Rubinstein [2002]: Robust matching οƒ˜ Kakimura, Makino [2013]: Robust independence system οƒ˜ Matuschke, Skutella, Soto [2015]: Mixed strategy  Our Result : Mixed strategy for robust knapsack problem οƒ˜ Upper/Lower bound for robustness οƒ˜ Better than pure strategy  Concluding Remarks

  5. Matching / Matroid Intersection 5 3  Hassin, Rubinstein [2002] οƒ˜ Matroid : greedy alg.  1-robust 8 6 4 πŸ‘  𝟐 οƒ˜ Matching : maximizing βˆ‘ π’‡βˆˆπ’€ 𝒒 𝒇 πŸ‘ -robust 5 𝟐 πŸ‘ is best possible π‘ž OPT 1 = 8 οƒ˜ π‘ž(OPT 2 ) = 10 1 1 2 π‘Œ : 0.8-robust 𝑍 : 0.75-robust  Fujita, K, Makino [2013] πŸ‘  𝟐 οƒ˜ Matroid Intersection : maximizing βˆ‘ π’‡βˆˆπ’€ 𝒒 𝒇 πŸ‘ -robust οƒ˜ Computation of max robustness: NP-hard

  6. Robust Independence System 6 𝑍 Def βˆ… ∈ β„±, def 𝐹, β„± : independence system π‘Œ π‘Œ βŠ† 𝑍, 𝑍 ∈ β„± β‡’ π‘Œ ∈ β„±  Kakimura, Makino [2013] πŸ‘  𝟐 οƒ˜ Ind. system : maximizing βˆ‘ π’‡βˆˆπ’€ 𝒒 𝒇 𝝂(β„±) -robust 𝟐 𝝂(𝓖) is best possible οƒ˜ Def [Mestre 2006] 𝝂(𝓖) β‰œ min. integer 𝜈 satisfying π‘Œ 𝑍 π‘Œ, 𝑍 ∈ β„±, 𝑓 ∈ 𝑍 βˆ’ π‘Œ 𝑓 β‡’ βˆƒπ‘Ž βŠ† π‘Œ βˆ’ 𝑍 π‘Ž s.t. π‘Ž ≀ 𝜈, π‘Œ βˆ’ π‘Ž + 𝑓 ∈ β„±

  7. 7 𝝂(𝓖) : Tractability of Independence System πŸ‘  𝟐  Kakimura, Makino [2013]: max. βˆ‘ π’‡βˆˆπ’€ 𝒒 𝒇 𝝂(β„±) -robust π‘Œ 𝑍 οƒ˜ Matroid: 𝜈 β„± = 1 οƒ˜ Matching: 𝜈 β„± ≀ 2 𝑓 π‘Ž οƒ˜ Intersection of 𝑛 matroids: 𝜈 β„± ≀ 𝑛 οƒ˜ Feasible sets of Knapsack Problem  𝜈 β„± = 𝑁 (arbitrarily large) 𝐷 π‘Œ = 𝑓 1 , … , 𝑓 𝑁 π‘₯ 𝑓 𝑗 = 𝐷 𝑁 π‘Œ = 𝑍 = 𝑓 0 (π‘₯ 𝑓 0 = 𝐷) 𝑍 =  Kakimura, Makino, Seimi [2012] οƒ˜ Robust Knapsack Problem: weakly NP-hard + FPTAS

  8. Mixed (or Randomized) Strategy 8  Matuschke, Skutella, Soto [2015] : Zero-Sum game Alice: Choose π‘Œ ∈ β„± Bob: Choose 𝑙 (knowing π‘Œ ) π‘ž(π‘Œ(𝑙))  Alice’s payoff = π‘ž(OPT 𝑙 )  Mixed Strategy = Distribution on β„±  Choose π‘Œ 𝑗 with probability πœ‡ 𝑗  robustness : 1 1 2 π‘ž π‘Œ 𝑙 βˆ‘ 𝑗 πœ‡ 𝑗 π‘ž(π‘Œ 𝑗 (𝑙)) min 𝐅 π‘ž(OPT 𝑙 ) = min π‘ž OPT 1 = 2 π‘ž(OPT 𝑙 ) 𝑙 𝑙 π‘ž(OPT 2 ) = 2 οƒ˜ Ex. Choose π‘Œ or 𝑍 with prob. Β½ Robustness of π‘Œ , 𝑍 1 2 β‹…1+ 1 1 2 β‹…2+ 1 2 β‹… 2 2 β‹… 2 2+ 2 min , = = 0.8535 … 1 2 = 0.7071 … 2 2 4

  9. Mixed (or Randomized) Strategy 9  Matuschke, Skutella, Soto [2015] 1. Choose 𝑦 in [0,1] uniformly at random β€² ≔ πŸ‘ 𝒓 𝒇 βˆ’π’š , and 2. For each 𝑓 , set π‘Ÿ 𝑓 ≔ log 2 π‘ž 𝑓 , 𝒒 𝒇 find π‘Œ ∈ β„± maximizing π‘žβ€²(π‘Œ) Round value π‘ž to power of two Thm [MSS 15] 𝟐 The above mixed strategy is 𝐦𝐨 πŸ“ -robust for οƒ˜ Matching 0.7213 … οƒ˜ Matroid intersection οƒ˜ Strongly base orderable matroid parity etc. 1 cf. 2 = 0.7071 …

  10. Contents 10  Introduction : Robust knapsack problem  Related Work οƒ˜ Hassin, Rubinstein [2002]: Robust matching οƒ˜ Kakimura, Makino [2013]: Robust independence system οƒ˜ Matuschke, Skutella, Soto [2015]: Mixed strategy  Our Result : Mixed strategy for robust knapsack problem οƒ˜ Upper/Lower bound for robustness οƒ˜ Better than pure strategy  Concluding Remarks

  11. Mixed Strategy for Robust Knapsack Problem 11 𝟐  Robustness of pure strategy: 𝝂(𝓖) [Kakimura, Makino 13] 𝜈(β„±) : arbitrarily large  Robustness of mixed strategy [Our result] 𝝇(𝓖) : another 𝐦𝐩𝐑 𝐦𝐩𝐑 𝝂(𝓖) 𝐦𝐩𝐑 𝐦𝐩𝐑 𝝇(𝓖) 1. Upper bound 𝐏 , 𝐏 parameter of ind. sys. 𝐦𝐩𝐑 𝝂(𝓖) 𝐦𝐩𝐑 𝝇(𝓖) 𝟐 𝟐 2. Lower bound 𝛁 𝐦𝐩𝐑 𝝂(𝓖) , 𝛁 𝐦𝐩𝐑 𝝇(𝓖) : Design a strategy 𝟐 𝟐 𝟐 Extend to ind. sys. : 𝐏 𝐦𝐩𝐑 𝝂(𝓖) , 𝐏 𝐦𝐩𝐑 𝝇(𝓖) , 𝛁 𝐦𝐩𝐑 𝝇(𝓖)

  12. Result 1. Upper Bound: Hard Instance 12 𝐷 = 𝑁 2π‘ˆ Type Number Total profit π‘₯ 𝑓 π‘ž 𝑓 π‘ž 𝑓 π‘₯ 𝑓 𝑁 2π‘ˆ 𝑁 2π‘ˆ 𝑁 2π‘ˆ 0 1 1 𝑁 2π‘ˆβˆ’2 𝑁 2π‘ˆβˆ’1 𝑁 2 𝑁 2π‘ˆ+1 1 𝑁 ∢ ∢ ∢ ∢ ∢ ∢ … 𝑁 2π‘ˆβˆ’2𝑗 𝑁 2π‘ˆβˆ’π‘— 𝑁 2𝑗 𝑁 𝑗 𝑁 2π‘ˆ+𝑗 𝑗 ∢ ∢ ∢ ∢ ∢ ∢ 𝑁 π‘ˆ 𝑁 2π‘ˆ 𝑁 π‘ˆ 𝑁 3π‘ˆ π‘ˆ 1 = 𝑁 2π‘ˆ , π‘ž π‘ƒπ‘„π‘ˆ 𝑁 2π‘ˆ = 𝑁 3π‘ˆ π‘ž OPT 1 Thm [Our result] 𝟐 πŸ‘ For any mixed strategy, robustness ≀ 𝑼+𝟐 + 𝑡 οƒ˜ No mixed strategy can achieve constant robustness

  13. Result 1. Upper Bound: Hard Instance 13 𝐷 = 𝑁 2π‘ˆ Type Number Total profit π‘₯ 𝑓 π‘ž 𝑓 π‘ž 𝑓 π‘₯ 𝑓 𝑁 2π‘ˆ 𝑁 2π‘ˆ 𝑁 2π‘ˆ 0 1 1 ∢ ∢ ∢ ∢ ∢ ∢ … 𝑁 2π‘ˆβˆ’2𝑗 𝑁 2π‘ˆβˆ’π‘— 𝑁 2𝑗 𝑁 𝑗 𝑁 2π‘ˆ+𝑗 𝑗 ∢ ∢ ∢ ∢ ∢ ∢ 𝑁 π‘ˆ 𝑁 2π‘ˆ 𝑁 π‘ˆ 𝑁 3π‘ˆ π‘ˆ 1  𝝂 𝓖 = 𝑡 πŸ‘π‘Ό π‘Œ 𝑍 𝑓 Thm [Our result] π‘Ž 𝟐 πŸ‘ For any mixed strategy, robustness ≀ 𝑼+𝟐 + 𝑡

  14. Result 1. Upper Bound: Hard Instance 14 𝐷 = 𝑁 2π‘ˆ Type Number Total profit π‘₯ 𝑓 π‘ž 𝑓 π‘ž 𝑓 π‘₯ 𝑓 𝑁 2𝑁 𝑁 2𝑁 𝑁 2𝑁 0 1 1 ∢ ∢ ∢ ∢ ∢ ∢ … 𝑁 2π‘βˆ’2𝑗 𝑁 2π‘βˆ’π‘— 𝑁 2𝑗 𝑁 𝑗 𝑁 2𝑁+𝑗 𝑗 ∢ ∢ ∢ ∢ ∢ ∢ 𝑁 𝑁 𝑁 2𝑁 𝑁 𝑁 𝑁 3𝑁 𝑁 1 log 𝑁 2𝑁 = Θ 𝑁 log 𝑁  𝝂 𝓖 = 𝑡 πŸ‘π‘΅ log log 𝑁 2𝑁 = Θ log 𝑁 Thm [Our result] πŸ’ For any mixed strategy, robustness ≀ 𝑡

  15. Result 1. Upper Bound: Hard Instance 15 𝐷 = 𝑁 2π‘ˆ Type Number Total profit π‘₯ 𝑓 π‘ž 𝑓 π‘ž 𝑓 π‘₯ 𝑓 𝑁 2𝑁 𝑁 2𝑁 𝑁 2𝑁 0 1 1 ∢ ∢ ∢ ∢ ∢ ∢ … 𝑁 2π‘βˆ’2𝑗 𝑁 2π‘βˆ’π‘— 𝑁 2𝑗 𝑁 𝑗 𝑁 2𝑁+𝑗 𝑗 ∢ ∢ ∢ ∢ ∢ ∢ 𝑁 𝑁 𝑁 2𝑁 𝑁 𝑁 𝑁 3𝑁 𝑁 1 log 𝑁 2𝑁 = Θ 𝑁 log 𝑁  𝝂 𝓖 = 𝑡 πŸ‘π‘΅ log log 𝑁 2𝑁 = Θ log 𝑁 Thm [Our result] πŸ’ 𝐦𝐩𝐑 𝐦𝐩𝐑 𝝂 𝓖 For any mixed strategy, robustness ≀ 𝑡 = 𝐏 𝐦𝐩𝐑 𝝂 𝓖

  16. 16 Result 2. Lower Bound: 𝛁 𝟐 𝐦𝐩𝐑 𝝂(𝓖) 𝑒 𝑑) 𝑛 ≔ log ( Strategy (A) 𝟐  βˆ€π‘— ∈ 0,1, … , 𝑛 , choose 𝒀 𝒋 = 𝐏𝐐𝐔 πŸ‘ 𝒋 ⋅𝒕 with prob. 𝒏+𝟐 𝐹 Thm [Our result] 𝑒 OPT 2 𝑛 ⋅𝑑 𝟐 Robustness β‰₯ 𝒏+𝟐 : 𝑑 𝑛 = O log 𝜈(β„±) ???  NO OPT 2 0 ⋅𝑑 𝓖 βˆ… 𝐷 𝒖 ≔ max{ π‘Œ : π‘Œ ∈ β„±} 𝒕 ≔ min π‘Œ : π‘Œ βˆ‰ β„± βˆ’ 1 Idea 𝜈(β„±) =1 Choose small items in advance 𝑛 : large 𝐷 /2

  17. 17 Result 2. Lower Bound: 𝛁 𝟐 𝐦𝐩𝐑 𝝂(𝓖) Strategy (B) 𝑒 π‘Œ βˆ— 1. π‘Œ βˆ— : optimal sol., 𝑍 : heaviest 𝑑 elements 2. π‘Œ 0 βŠ† π‘Œ βˆ— : π‘₯ π‘Œ 0 ≀ 𝐷 βˆ’ π‘₯(𝑍) with max size 𝑍 𝑑 𝓖 log π‘Œ βˆ— βˆ’π‘Œ 0 𝐷 β€² ≔ 𝐷 βˆ’ π‘₯(π‘Œ 0 ) , 𝐹 β€² ≔ 𝐹 βˆ’ π‘Œ 0 , 𝑛 β€² ≔ 3. 𝑑 𝟐 4. βˆ€π‘— ∈ 0,1, … , 𝑛′ , choose 𝐏𝐐𝐔′ πŸ‘ 𝒋 ⋅𝒕 βˆͺ 𝒀 𝟏 with prob. 𝒏 β€² +𝟐 Thm [Our result] 𝐷 𝟐 𝟐 Robustness β‰₯ π‘Œ βˆ— πŸ“(𝒏 β€² +𝟐) = 𝛁 𝐦𝐩𝐑 𝝂 𝓖 π‘Œ 0 𝑍 𝟐 cf. pure strategy: 𝝂(𝓖) [Kakimura, Makino 13]

  18. Contents 18  Introduction : Robust knapsack problem  Related Work οƒ˜ Hassin, Rubinstein [2002]: Robust matching οƒ˜ Kakimura, Makino [2013]: Robust independence system οƒ˜ Matuschke, Skutella, Soto [2015]: Mixed strategy  Our Result : Mixed strategy for robust knapsack problem οƒ˜ Upper/Lower bound for robustness οƒ˜ Better than pure strategy  Concluding Remarks

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend