random dieudonn e modules and the cohen lenstra heuristics
play

Random Dieudonn e Modules and the Cohen-Lenstra Heuristics David - PowerPoint PPT Presentation

Random Dieudonn e Modules and the Cohen-Lenstra Heuristics David Zureick-Brown Bryden Cais Jordan Ellenberg Emory University Slides available at http://www.mathcs.emory.edu/~dzb/slides/ Arithmetic of abelian varieties in families Lausanne,


  1. Random Dieudonn´ e Modules and the Cohen-Lenstra Heuristics David Zureick-Brown Bryden Cais Jordan Ellenberg Emory University Slides available at http://www.mathcs.emory.edu/~dzb/slides/ Arithmetic of abelian varieties in families Lausanne, Switzerland November 13, 2012

  2. Basic Question How often does p divide h ( − D )? David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 2 / 29

  3. Basic Question What is # { 0 ≤ D ≤ X s.t. p | h ( − D ) } P ( p | h ( − D )) = lim ? # { 0 ≤ D ≤ X } X →∞ David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 3 / 29

  4. Guess : Random Integer? P ( p | h ( − D )) = P ( p | D ) = 1 p ??? David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 4 / 29

  5. Data (Buell ’76) P ( p | h ( − D )) ≈ 1 p + 1 p 2 − 1 p 5 − 1 p 7 + · · · ( p odd ) � 1 − 1 � � = 1 − p i i ≥ 1 = 0 . 43 . . . � = 1 / 3 ( p = 3) = 0 . 23 . . . � = 1 / 5 ( p = 5) P (Cl( − D ) 3 ∼ = Z / 9 Z ) ≈ 0 . 070 P (Cl( − D ) 3 ∼ = ( Z / 3 Z ) 2 ) ≈ 0 . 0097 David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 5 / 29

  6. Random finite abelian groups Idea P ( p | h ( − D )) = P ( p | # G ) = ??? David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 6 / 29

  7. Random finite abelian groups Idea P ( p | h ( − D )) = P ( p | # G ) = ??? Let G p be the set of isomorphism classes of finite abelian groups of p -power order. David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 6 / 29

  8. Random finite abelian groups Idea P ( p | h ( − D )) = P ( p | # G ) = ??? Let G p be the set of isomorphism classes of finite abelian groups of p -power order. Theorem (Cohen, Lenstra) � − 1 1 � 1 − 1 � � = C − 1 (i) # Aut G = p p i G ∈ G p i David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 6 / 29

  9. Random finite abelian groups Idea P ( p | h ( − D )) = P ( p | # G ) = ??? Let G p be the set of isomorphism classes of finite abelian groups of p -power order. Theorem (Cohen, Lenstra) � − 1 1 � 1 − 1 � � = C − 1 (i) # Aut G = p p i G ∈ G p i C p (ii) G �→ # Aut G is a probability distribution on G p David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 6 / 29

  10. Random finite abelian groups Idea P ( p | h ( − D )) = P ( p | # G ) = ??? Let G p be the set of isomorphism classes of finite abelian groups of p -power order. Theorem (Cohen, Lenstra) � − 1 1 � 1 − 1 � � = C − 1 (i) # Aut G = p p i G ∈ G p i C p (ii) G �→ # Aut G is a probability distribution on G p p r p ( G ) � � (iii) Avg (# G [ p ]) = Avg = 2 David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 6 / 29

  11. Cohen and Lenstra’s conjecture Let f : G p → Z be a function. Definition C p � Avg f = # Aut G · f ( G ) G ∈ G p David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 7 / 29

  12. Cohen and Lenstra’s conjecture Let f : G p → Z be a function. Definition C p � Avg f = # Aut G · f ( G ) G ∈ G p � 0 ≤ D ≤ X f (Cl( − D ) p ) Avg Cl f = � 0 ≤ D ≤ X 1 David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 7 / 29

  13. Cohen and Lenstra’s conjecture Let f : G p → Z be a function. Definition C p � Avg f = # Aut G · f ( G ) G ∈ G p � 0 ≤ D ≤ X f (Cl( − D ) p ) Avg Cl f = � 0 ≤ D ≤ X 1 Conjecture (Cohen, Lenstra) (i) Avg Cl f = Avg f David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 7 / 29

  14. Cohen and Lenstra’s conjecture Let f : G p → Z be a function. Definition C p � Avg f = # Aut G · f ( G ) G ∈ G p � 0 ≤ D ≤ X f (Cl( − D ) p ) Avg Cl f = � 0 ≤ D ≤ X 1 Conjecture (Cohen, Lenstra) (i) Avg Cl f = Avg f (ii) Avg (# Cl( − D )[ p ]) = 2 David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 7 / 29

  15. Cohen and Lenstra’s conjecture Let f : G p → Z be a function. Definition C p � Avg f = # Aut G · f ( G ) G ∈ G p � 0 ≤ D ≤ X f (Cl( − D ) p ) Avg Cl f = � 0 ≤ D ≤ X 1 Conjecture (Cohen, Lenstra) (i) Avg Cl f = Avg f (ii) Avg (# Cl( − D )[ p ]) 2 = 2 + p David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 7 / 29

  16. Cohen and Lenstra’s conjecture Let f : G p → Z be a function. Definition C p � Avg f = # Aut G · f ( G ) G ∈ G p � 0 ≤ D ≤ X f (Cl( − D ) p ) Avg Cl f = � 0 ≤ D ≤ X 1 Conjecture (Cohen, Lenstra) (i) Avg Cl f = Avg f (ii) Avg (# Cl( − D )[ p ]) 2 = 2 + p (iii) P (Cl( − D ) p ∼ C p = G ) = # Aut G . David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 7 / 29

  17. Progress Davenport-Heilbronn – Avg Cl( − D )[3] = 2 Bhargava – Avg Cl( K )[2] = 3 ( K cubic) Bhargava – counts quartic dihedral extensions 1 x 2 Kohnen-Ono – N p ∤ h ( X ) ≫ log x 9 N p | h ( X ) ≫ x 10 Heath-Brown – log x 1 x g Byeon – N Cl p ∼ =( Z / g Z ) 2 ( X ) ≫ log x David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 8 / 29

  18. Cohen-Lenstra over F q ( t ), ℓ � = p Cl( − D ) = Pic(Spec O K ) vs Pic( C ) David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 9 / 29

  19. Cohen-Lenstra over F q ( t ), ℓ � = p Cl( − D ) = Pic(Spec O K ) vs deg Pic( C ) − − → Z → 0 David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 9 / 29

  20. Cohen-Lenstra over F q ( t ), ℓ � = p Cl( − D ) = Pic(Spec O K ) vs deg 0 → Pic 0 ( C ) → Pic( C ) − − → Z → 0 David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 9 / 29

  21. Basic Question over F q ( t ), ℓ � = p Fix G ∈ G ℓ . What is P (Pic 0 ( C ) ℓ ∼ = G )? (Limit is taken as deg f → ∞ , where C : y 2 = f ( x ).) David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 10 / 29

  22. Main Tool over F q ( t ) – Tate Module Aut T ℓ (Jac C ) ∼ = Z 2 g ℓ David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 11 / 29

  23. Main Tool over F q ( t ) – Tate Module Gal F q → Aut T ℓ (Jac C ) ∼ = Z 2 g ℓ David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 11 / 29

  24. Main Tool over F q ( t ) – Tate Module Frob ∈ Gal F q → Aut T ℓ (Jac C ) ∼ = Z 2 g ℓ David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 11 / 29

  25. Main Tool over F q ( t ) – Tate Module - Frob ∈ Gal F q → Aut T ℓ (Jac C ) ∼ = Z 2 g ℓ - coker (Frob − Id) ∼ = Jac C ( F q ) ℓ = Pic 0 ( C ) David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 11 / 29

  26. Random Tate-modules F ∈ GL 2 g ( Z ℓ ) (w/ Haar measure) David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 12 / 29

  27. Random Tate-modules F ∈ GL 2 g ( Z ℓ ) (w/ Haar measure) Theorem (Friedman, Washington) C ℓ P (coker F − I ∼ = L ) = # Aut L David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 12 / 29

  28. Random Tate-modules F ∈ GL 2 g ( Z ℓ ) (w/ Haar measure) Theorem (Friedman, Washington) C ℓ P (coker F − I ∼ = L ) = # Aut L Conjecture C ℓ P (Pic 0 ( C ) ∼ = L ) = # Aut L David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 12 / 29

  29. Progress In the limit (w/ upper and lower densities): Achter – conjectures are true for GSp 2 g instead of GL 2 g . Ellenberg-Venkatesh – conjectures are true if ℓ ∤ q − 1. Garton – explicit conjectures for GSp 2 g , ℓ | q − 1. David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 13 / 29

  30. Cohen-Lenstra over F p ( t ), ℓ = p Basic question – what is P ( p | # Jac C ( F p ))? David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 14 / 29

  31. Cohen-Lenstra over F p ( t ), ℓ = p T ℓ (Jac C ) ∼ = Z r ℓ , 0 ≤ r ≤ g David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 15 / 29

  32. Cohen-Lenstra over F p ( t ), ℓ = p T ℓ (Jac C ) ∼ = Z r ℓ , 0 ≤ r ≤ g Definition The p - rank of Jac C is the integer r . David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 15 / 29

  33. Cohen-Lenstra over F p ( t ), ℓ = p T ℓ (Jac C ) ∼ = Z r ℓ , 0 ≤ r ≤ g Definition The p - rank of Jac C is the integer r . Complication As C varies, r varies. Need to know the distribution of p -ranks, or find a better algebraic gadget than T ℓ (Jac C ). David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 15 / 29

  34. Dieudonn´ e Modules Definition (i) D = Z q [ F , V ] / ( FV = VF = p , Fz = z σ F , Vz = z σ − 1 V ). David Zureick-Brown (Emory University) Random Dieudonn´ e Modules November 13, 2012 16 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend