radiative corrections to the binding energy for a spin 1
play

Radiative corrections to the binding energy for a spin 1 / 2 charged - PowerPoint PPT Presentation

Radiative corrections to the binding energy for a spin 1 / 2 charged particle (Toulon 2014) Semjon Wugalter Joint works with Jean-Marie Barbaroux (University of Toulon ) Semjon Wugalter NRQED binding energy Quantitative estimates on the


  1. Radiative corrections to the binding energy for a spin 1 / 2 charged particle (Toulon 2014) Semjon Wugalter Joint works with Jean-Marie Barbaroux (University of Toulon ) Semjon Wugalter NRQED binding energy

  2. • “Quantitative estimates on the binding energy for Hydrogen in non-relativistic QED. II. The spin case.”, arXiv :1306 :4464 (2013) J.-M. Barbaroux, S. W. • “Contribution of the Spin-Zeeman term to the binding energy for hydrogen in non-relativistic QED”, Annals of the University of Bucharest (2013) J.-M. Barbaroux, S.W. • “On the ground state energy of the translation invariant Pauli-Fierz model. II.”, Documenta Mathematica (2012). J.-M. Barbaroux., S.W. • “Non-analyticity of the ground state energy of the Hamiltonian for Hydrogen atom in non-relativistic QED”, Journal of Physics A : Mathematical and Theoretical (2010) J.-M. Barbaroux., S. W. • “Quantitative estimates on the binding energy for Hydrogen in non-relativistic QED”, Annales Henri Poincaré (2010). J.-M. Barbaroux., Thomas Chen, Vitali Vougalter, S.W. • “On the ground state energy of the translation invariant Pauli-Fierz model”, Proc. Amer. Math. Soc., 136 (3), 1057-1064 (2008). J.-M. Barbaroux., Thomas Chen, Vitali Vougalter, S.W. • “Quantitative estimates on the enhanced binding for the Pauli-Fierz operator”, J. Math. Phys., vol. 46, no12 (2005). J.-M. Barbaroux., Helmut Linde, S. W. • “Binding conditions for atomic N-electron systems in non-relativistic QED”, Ann. Henri Poincaré. 4 (6), 1101 - 1136 (2003). J.-M. Barbaroux., Thomas Chen, S. W. Semjon Wugalter NRQED binding energy

  3. Pauli-Fierz Operator 1 Ground state - Binding energy 2 Unitary transform - Self-Energy - Change of units 3 Preliminary results 4 Increase of the binding energy - spin case 5 Semjon Wugalter NRQED binding energy

  4. Description We study the Hamiltonian in NRQED for an atom. ◮ System with 1 electron, described as quantum, non relativistic , pointwise particle with charge − e and spin 1 2 ◮ The electron interacts with the quantized magnetic field ◮ One static pointwise nucleus, with positive charge - The electron interacts with the field of the nucleus via the Coulomb potential. ◮ One also study the free case (“self-energy” operator). Semjon Wugalter NRQED binding energy

  5. Introduction - Schrödinger Hamiltonian Hamiltonian One electron interacting with a pointwise nucleus of charge e , ( Z = 1). H p = − ∆ + V Coulomb Potential : V ( x ) = − e 2 | x | Electron mass m = 1 / 2 ; Planck constant � = 1 ; velocity of light c = 1. Fine structure constant : α = e 2 ≈ 1 / 137 Binding energy Energy necessary to remove the electron to spatial infinity : Σ( 0 ) − Σ( V ) = inf σ ( − ∆) − inf σ ( − ∆ − α/ | x | ) . Semjon Wugalter NRQED binding energy

  6. Introduction - Schrödinger Hamiltonian � R 3 1 | x | | ψ ( x ) | 2 d x ≤ �∇ ψ � � ψ � ⊲ Coulomb uncertainty principle : ⊲ � ψ, ( − ∆ + V ) ψ � ≥ �∇ ψ � 2 − α �∇ ψ � � ψ � � 2 � �∇ ψ � 2 − e 2 − α 2 4 � ψ � 2 = 2 � ψ � � �� � ≥ 0 ⊲ Σ( V ) = inf σ ( − ∆ + V ) = − α 2 4 . Binding energy Σ( 0 ) − Σ( V ) = inf σ ( − ∆) − inf σ ( − ∆ + V ) = α 2 4 . Semjon Wugalter NRQED binding energy

  7. Coupling to the quantized radiation field : Pauli-Fierz Hamiltonian Hamiltonian (Coulomb gauge) N = 1 electron Coulomb potential case : Pauli-Fierz operator − i ∇ x ⊗ I f + √ α A ( x ) α Z � � 2 H PF = − | x | ⊗ I f � �� � � �� � kinetic energy Coulomb electrostatic potential + ( q − 1 ) √ ασ · B ( x ) + I el ⊗ H f � �� � � �� � Zeeman term radiation field energy operator Free case : “self-energy” operator T self.en. = ( − i ∇ x + √ α A ( x )) 2 +( q − 1 ) √ ασ · B ( x ) + H f � �� � � �� � ���� kinetic energy Zeeman term Field energy System of units : Electron mass m = 1 / 2 ; Planck const. � = 1 ; speed of light c = 1 ; fine structure constant : α = e 2 ≈ 1 / 137 Semjon Wugalter NRQED binding energy

  8. Pauli-Fierz Hamiltonian Hilbert space H = H part ⊗ F s ◮ H part = L 2 ( R 3 , C q ) : Hilbert space for N = 1 electron. R 3 is configuration space, C q for spin q = 1 : “spinless” particule ; q = 2 : electron (with spin) ◮ F s : Bosonic Fock space   ∞ � � n L 2 ( R 3 , C 2 ) F s = Ω f C ⊕   s � �� � n = 1 one photon space (momentum variable × 2 polarizations transv.) � �� � F ( n ) n -photon space s ◮ Vacuum : Ω f . Semjon Wugalter NRQED binding energy

  9. Pauli-Fierz Hamiltonian ◮ creation/annihilation operators : a ∗ λ ( k ) , a λ ( k ) . Fulfils C.C.R : λ ′ ( k )] = δ λ,λ ′ δ ( k − k ′ ) , [ a ♯ λ ( k ) , a ♯ [ a λ ( k ) , a ∗ λ ′ ( k )] = 0, a λ ( k )Ω f = 0 ◮ Field energy : � � ω ( k ) a ∗ H f = λ ( k ) a λ ( k ) d k , ω ( k ) = | k | λ = 1 , 2 H f = � n H f ( n ) , H f Ω f = 0, ( H ( n ) Φ ( n ) )( k 1 , k 2 , · · · , k n ) = � n j = 1 | k j | Φ ( n ) ( k 1 , k 2 , · · · , k n ) f ◮ Photon number operator : � � a ∗ N f = λ ( k ) a λ ( k ) d k λ = 1 , 2 i.e., ( N f Φ) ( n ) ( k 1 , · · · , k n ) = n Φ ( n ) ( k 1 , · · · , k n ) . Semjon Wugalter NRQED binding energy

  10. Pauli-Fierz Hamiltonian ◮ Magnetic vector potential : (Coulomb gauge) A ( x ) = A − ( x ) + A + ( x ) � χ Λ ( | k | ) � ǫ λ ( k ) e ik . x a λ ( k ) d k + h . c . = 1 2 π | k | 2 λ = 1 , 2 ◮ Polarization vectors : ǫ λ ( k ) , ǫ 1 ( k ) · ǫ 2 ( k ) = 0, k · ǫ λ ( k ) = 0. ◮ UV (Ultraviolet) cutoff : χ Λ ( | k | ) ◮ Coupling between electron and quantized magnetic field √ ασ · B , with B = Curl A , � χ Λ ( | k | ) � 2 π | k | 1 / 2 k × i ε λ ( k ) e ikx a λ ( k ) d k + h . c . , B ( x ) = R 3 λ = 1 , 2 and σ = ( σ 1 , σ 2 , σ 3 ) , σ i are 2 × 2 Pauli matrices. Semjon Wugalter NRQED binding energy

  11. Pauli-Fierz Hamiltonian H PF =( P −√ α A ( x )) 2 + V +( q − 1 ) √ ασ · B ( x )+ H f , V = − α | x | , P = i ∇ x And also H PF = H p + H f + H I ( α ) where H p = ( − ∆ + V ) ⊗ I f H f = field energy operator H I ( α )= interaction = − 2Re √ α P . A ( x )+ α A ( x ) 2 + √ ασ · B ( x ) Semjon Wugalter NRQED binding energy

  12. Self-adjointness Hamiltonian • The Hamiltonian H PF is self-adjoint, with domain D ( H part. + H f ) • Stability of the first kind : inf σ ( H PF ) > −∞ • Stability of the second kind : N electrons and M nuclei with charge Z k ( k = 1 , ..., M ) inf σ ( H PF ) ≥ − C (Λ , max { Z k } ) ( M + N ) Ground state inf σ ( H PF ) is an eigenvalue of multiplicity q . Semjon Wugalter NRQED binding energy

  13. Binding energy Hamiltonian H = L 2 ( R 3 ) ⊗ F H PF = T + V ⊗ I f sur T = ( − i ∇ x ⊗ I f + √ α A ( x )) 2 + I el ⊗ H f − c n . o . α Binding energy : Σ α ( 0 ) − Σ α ( V ) = inf σ ( T ) − inf σ ( T + V ) Remark : H PF = T + V = − ∆ x + V + H f + ( − 2Re √ α A ( x ) · i ∇ x + α A ( x ) 2 − c n . o . α ) � �� � := H I ( α ) Semjon Wugalter NRQED binding energy

  14. What is expected ? H PF = − ∆ x + V + H f + H I ( α ) The free particle binds a larger quantity of (low-energetic) 1 photons than the confined particle. The binding energy should increase : 2 Σ α ( 0 ) − Σ α ( V ) > Σ( 0 ) − Σ( V ) = α 2 4 Semjon Wugalter NRQED binding energy

  15. Unitary transform U = e iP f · x The e − momentum variable is shifted by P f = � � k a ∗ λ ( k ) a λ ( k ) d k . λ The photon “position” is shifted by x . • U ( i ∇ x ) U ∗ = i ∇ x − P f ( i ∇ x acquires the meaning of the total momentum, i.e., momentum of particle + field). • U A ( x ) U ∗ = A ( 0 ) U B ( x ) U ∗ = B ( 0 ) . and • U T U ∗ = ( P − P f − √ α A ( 0 )) 2 + ( q − 1 ) σ. B ( 0 ) + H f − c n . o . α , P := i ∇ x . • U ( T + V ) U ∗ = U H PF U ∗ = P − P f − √ α A ( 0 ) � 2 + ( q − 1 ) σ. B ( 0 ) + H f � − α | x | − c n . o . α � �� � T Semjon Wugalter NRQED binding energy

  16. Unitary transform Equivalent Hamiltonian H := U ( T + V ) U ∗ P − P f − √ α A ( 0 ) − α � 2 + ( q − 1 ) σ. B ( 0 ) + H f � = | x | − c n . o α � �� � T + ( P f + √ α A ( 0 )) 2 + ( q − 1 ) σ. B ( 0 ) + H f − c n . o α = ( P 2 − α | x | ) � �� � � �� � Self-Energy with total momentum 0, T ( 0 ) Schrödinger operator − 2Re P . ( P f + √ α A ( 0 )) Semjon Wugalter NRQED binding energy

  17. Operator Self-Energy Self-energy at fixed total momentum : The operator T = − ∆ + H f + H I ( α ) commutes with the total momentum P tot , � � k a ∗ P tot = ( i ∇ x ⊗ I f ) + ( I el ⊗ P f ) , P f = λ ( k ) a λ ( k ) d k λ � ⊕ T ( p ) acting on H 0 ≃ C q ⊗ F T ≃ R 3 T ( p ) d p Theorem ( [F’74], [CF’07], [C’08] ) inf σ ( T ( 0 )) = inf σ ( T ) = Σ α ( 0 ) Σ α ( 0 ) is an eigenvalue of T ( 0 ) : T ( 0 )Ψ GS 0 = Σ α ( 0 )Ψ GS 0 . Semjon Wugalter NRQED binding energy

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend