r t t t r t s ts

r t t t - PowerPoint PPT Presentation

tt r tt ts r t t t rt sts


  1. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s ▲❛❜✲❙❚■❈❈✱ ❊◆❙❚❆✲❇r❡t❛❣♥❡ ▼❘■❙✱ ❊◆❙❚❆✲P❛r✐s✱ ▼❛r❝❤ ✶✺✱ ✷✵✶✽ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  2. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ▼♦t✐✈❛t✐♦♥ ❬✺❪❬✹❪ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  3. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  4. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  5. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❈♦♥s✐❞❡r t❤❡ s②st❡♠ S : ˙ ① ( t ) = ❢ ( ① ( t )) ❉❡♥♦t❡ ❜② ϕ ( t , ① ) t❤❡ ✢♦✇ ♠❛♣✳ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  6. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s P♦s✐t✐✈❡ ✐♥✈❛r✐❛♥t s❡t ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  7. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❆ s❡t A ✐s ♣♦s✐t✐✈❡ ✐♥✈❛r✐❛♥t ❬✶❪ ✐❢ ① ∈ A , t ≥ ✵ = ⇒ ϕ ( t , ① ) ∈ A . ❖r ❡q✉✐✈❛❧❡♥t❧② ϕ ([ ✵ , ∞ ] , A ) ⊂ A . ❚❤❡ s❡t ♦❢ ❛❧❧ ♣♦s✐t✐✈❡ ✐♥✈❛r✐❛♥t s❡ts ✐s ❛ ❝♦♠♣❧❡t❡ ❧❛tt✐❝❡✳ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  8. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  9. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ▲❛tt✐❝❡ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  10. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❆ ❧❛tt✐❝❡ ( L , ≤ ) ✐s ❛ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ s❡t✱ ❝❧♦s❡❞ ✉♥❞❡r ❧❡❛st ✉♣♣❡r ❛♥❞ ❣r❡❛t❡st ❧♦✇❡r ❜♦✉♥❞s ❬✷❪✳ ❆ ♠❛❝❤✐♥❡ ❧❛tt✐❝❡ ( L ▼ , ≤ ) ♦❢ L ✐s ❝♦♠♣❧❡t❡ s✉❜❧❛tt✐❝❡ ♦❢ ( L , ≤ ) ✇❤✐❝❤ ✐s ✜♥✐t❡✳ ▼♦r❡♦✈❡r ❜♦t❤ L ❛♥❞ L ▼ ❤❛✈❡ t❤❡ s❛♠❡ t♦♣ ❛♥❞ ❜♦tt♦♠✳ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  11. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ▼❛❝❤✐♥❡ ❧❛tt✐❝❡ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  12. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❲❡ ❝♦♥s✐❞❡r ❛ s❡t F ♦❢ ❛✉t♦♠♦r♣❤✐s♠ ❢ ✿ P ( X ) → P ( X ) s✉❝❤ t❤❛t ❢ ( X ) = X ❢ ( A ∩ B ) = ❢ ( A ) ∩ ❢ ( B ) ◆♦t❡ t❤❛t ❢ ✐s ✐♥❝❧✉s✐♦♥ ♠♦♥♦t♦♥✐❝✳ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  13. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❑❧❡❡♥❡ (+ , · , ∗ ) ❑ ❧❡❡♥❡ ( ∩ , ◦ , ∗ ) ❛ + ❜ ❢ ∩ ❣ ❆❞❞✐t✐♦♥ ❛ · ❜ ❢ ◦ ❣ Pr♦❞✉❝t ❛ +( ❜ + ❝ ) = ( ❛ + ❜ )+ ❝ ❢ ∩ ( ❣ ∩ ❤ ) = ( ❢ ∩ ❣ ) ∩ ❤ ❆ss♦❝✐❛t✐✈✐t② ❛ ( ❜❝ ) = ( ❛❜ ) ❝ ❢ ◦ ( ❣ ◦ ❤ ) = ( ❢ ◦ ❣ ) ◦ ❤ ❈♦♠♠✉t❛t✐✈✐t② ❛ + ❜ = ❜ + ❛ ❢ ∩ ❣ = ❣ ∩ ❢ ❉✐str✐❜✉t✐✈✐t② ❛ ( ❜ + ❝ ) = ( ❛❜ )+( ❛❝ ) ❢ ◦ ( ❣ ∩ ❤ ) = ( ❢ ◦ ❣ ) ∩ ( ❢ ◦ ❤ ) ( ❜ + ❝ ) ❛ = ( ❜❛ )+( ❝❛ ) ( ❣ ∩ ❤ ) ◦ ❢ = ( ❣ ◦ ❢ ) ∩ ( ❤ ◦ ❢ ) ③❡r♦ ❛ + ✵ = ❛ ❢ ∩⊤ = ❢ ❖♥❡ ❛ ✶ = ✶ ❛ = ❛ ❢ ◦ ■❞ = ■❞ ◦ ❢ = ❢ ❆♥♥✐❤✐❧❛t✐♦♥ ❛ ✵ = ✵ ❛ = ✵ ❢ ◦⊤ = ⊤ ■❞❡♠♣♦t❡♥❝❡ ❛ + ❛ = ❛ ❢ ∩ ❢ = ❢ P❛rt✐❛❧ ♦r❞❡r ❛ ≤ ❜ ⇔ ❛ + ❜ = ❜ ❢ ⊃ ❣ ⇔ ❢ ∩ ❣ = ❣ ❛ ∗ = ✶ + ❛ + ❛❛ + ❛❛❛ + ... ❢ ∗ = ■❞ ∩ ❢ ∩ ❢ ✷ ∩ ❢ ✸ ∩ ... ❑❧❡❡♥❡ st❛r ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  14. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❘❡❞✉❝❡rs ❚♦ ❛♥ ❛✉t♦♠♦r♣❤✐s♠ ❢ ∈ F ✱ ✇❡ ❝❛♥ ❛ss♦❝✐❛t❡ t❤❡ r❡❞✉❝❡r R = ■❞ ∩ ❢ ✳ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  15. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❲❡ ❤❛✈❡ A ⊂ B ⇒ R ( A ) ⊂ R ( B ) ♠♦♥♦t♦♥✐❝✐t② R ( A ) ⊂ A ❞❡❣r♦✇t❤ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  16. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❚❤❡♦r❡♠ ✳ ❲❡ ❤❛✈❡ ( ■❞ ∩ ❢ ) ∞ = ❢ ∗ Pr♦♦❢ ✳ ❙✐♥❝❡ ❢ ✐s s✉❝❤ t❤❛t ❢ ( A ∩ B )) = ❢ ( A ) ∩ ❢ ( B ) , ✇❡ ❤❛✈❡ ( ■❞ ∩ ❢ ) ✷ ( A ) = ( ■❞ ∩ ❢ )( A ∩ ❢ ( A )) = = A ∩ ❢ ( A ) ∩ ❢ ( A ∩ ❢ ( A )) A ∩ ❢ ( A ) ∩ ❢ ✷ ( A ) = ❛♥❞ ( ■❞ ∩ ❢ ) ∞ ( A ) = A ∩ ❢ ( A ) ∩ ❢ ✷ ( A ) ∩ ❢ ✸ ( A ) ∩··· = ❢ ∗ ( A ) . ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  17. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ❲❡ ❞❡✜♥❡ ❋✐① ( ❢ ∗ ) = { A | ❢ ∗ ( A ) = A } = ❋✐① ( ■❞ ∩ ❢ ) ❋r♦♠ t❤❡ ❑♥❛st❡r✕❚❛rs❦✐ t❤❡♦r❡♠✱ ✐t ✐s ❛ ❝♦♠♣❧❡t❡ s✉❜❧❛tt✐❝❡ ♦❢ L ✳ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

  18. ▼♦t✐✈❛t✐♦♥ ❑❧❡❡♥❡ ❛❧❣❡❜r❛ ❇♦♦❧❡❛♥ ❧❛tt✐❝❡ ❆♣♣❧✐❝❛t✐♦♥s ✭❛✮ ✿ ❘❡❞ ♥♦❞❡s ✿ A ✱ ✭❜✮✿ A ∩ ❢ ( A ) ✱ ✭❝✮✿ A ∩ ❢ ( A ) ∩ ❢ ✷ ( A ) ✱ ✭❞✮✿ ❢ ∗ ( A ) . ❑❧❡❡♥❡ ❛❧❣❡❜r❛ t♦ ❝♦♠♣✉t❡ ✇✐t❤ ✐♥✈❛r✐❛♥t s❡ts ♦❢ ❞②♥❛♠✐❝❛❧ s②st❡♠s

Recommend


More recommend