r nyi divergences and hypothesis testing problems
play

Rnyi divergences and hypothesis testing problems Miln Mosonyi 1 , 2 1 - PowerPoint PPT Presentation

Rnyi divergences and hypothesis testing problems Miln Mosonyi 1 , 2 1 Fsica Terica: Informaci i Fenomens Quntics Universitat Autnoma Barcelona 2 Mathematical Institute Budapest University of Technology and Economics Paris 2015


  1. Rényi divergences and hypothesis testing problems Milán Mosonyi 1 , 2 1 Física Teòrica: Informació i Fenomens Quàntics Universitat Autónoma Barcelona 2 Mathematical Institute Budapest University of Technology and Economics Paris 2015

  2. Binary state discrimination • Two candidates for the true state of a system: H 0 : ρ vs. H 1 : σ • Many identical copies are available: H 0 : ρ ⊗ n vs. H 1 : σ ⊗ n on H ⊗ n . • Decision is based on a binary POVM ( T, I − T ) α n ( T ) := Tr ρ ⊗ n ( I n − T ) • error probabilities: (first kind) β n ( T ) := Tr σ ⊗ n T (second kind) • trade-off: min 0 ≤ T ≤ I { α n ( T ) + β n ( T ) } > 0 unless ρ n ⊥ σ n

  3. Binary state discrimination • Two candidates for the true state of a system: H 0 : ρ vs. H 1 : σ • Many identical copies are available: H 0 : ρ ⊗ n vs. H 1 : σ ⊗ n on H ⊗ n . • Decision is based on a binary POVM ( T, I − T ) α n ( T ) := Tr ρ ⊗ n ( I n − T ) • error probabilities: (first kind) β n ( T ) := Tr σ ⊗ n T (second kind) • trade-off: min 0 ≤ T ≤ I { α n ( T ) + β n ( T ) } > 0 unless ρ n ⊥ σ n • Quantum Stein’s lemma: 1 β n ( T n ) ∼ e − nD 1 ( ρ � σ ) α n ( T n ) → 0 = ⇒ is the optimal decay D 1 ( ρ � σ ) := Tr ρ (log ρ − log σ ) relative entropy 2 1 Hiai, Petz, 1991, Ogawa, Nagaoka, 2001; 2 Umegaki, 1962

  4. Relative entropy • The (quantum) Stein’s lemma gives an operational interpretation to the (quantum) relative entropy (Kullback-Leibler divergence). • Notion of “distance” on the state space. • All relevant information measures are derived from it: entropy: H ( ρ ) := − D 1 ( ρ � I ) I ( A : B ) ρ := D 1 ( ρ AB � ρ A ⊗ ρ B ) mutual information: all sorts of channel capacities, etc.

  5. Relative entropy • The (quantum) Stein’s lemma gives an operational interpretation to the (quantum) relative entropy (Kullback-Leibler divergence). • Notion of “distance” on the state space. • All relevant information measures are derived from it (?) entropy: H ( ρ ) := − D 1 ( ρ � I ) I ( A : B ) ρ := D 1 ( ρ AB � ρ A ⊗ ρ B ) mutual information: all sorts of channel capacities, etc. • Statistical divergence ∆ on the state space: (1) ∆( ρ � σ ) ≥ 0 , ∆( ρ, σ ) = 0 ⇐ ⇒ ρ = σ (2) ∆(Φ( ρ ) � Φ( σ )) ≤ ∆( ρ � σ ) Φ stochastic map Example: f -divergences (3) operational interpretation?

  6. Other statistical divergences • Trace-norm distance: H 0 : ρ vs. H 1 : σ 0 ≤ T ≤ I { α ( T ) + β ( T ) } = 1 − 1 min 2 � ρ − σ � 1 ∆ Tr ( ρ � σ ) := 1 2 � ρ − σ � 1

  7. Other statistical divergences • Trace-norm distance: H 0 : ρ vs. H 1 : σ 0 ≤ T ≤ I { α ( T ) + β ( T ) } = 1 − 1 2 � ρ − σ � 1 min ∆ Tr ( ρ � σ ) := 1 2 � ρ − σ � 1 • Chernoff bound theorem: 1 � � ρ ⊗ n − σ ⊗ n � 1 − 1 � 1 ∼ e − nC ( ρ,σ ) 2 C ( ρ, σ ) := − 0 <α< 1 ( α − 1) D α ( ρ � σ ) inf Chernoff divergence 1 α − 1 log Tr ρ α σ 1 − α D α ( ρ � σ ) := Rényi divergences 1 Nussbaum, Szkoła, 2006; Audenaert et al., 2006

  8. Quantifying the trade-off β n ( T n ) ∼ e − nD 1 ( ρ � σ ) • Stein’s lemma: α n ( T n ) → 0 = ⇒

  9. Quantifying the trade-off β n ( T n ) ∼ e − nD 1 ( ρ � σ ) • Stein’s lemma: α n ( T n ) → 0 = ⇒ Quantum Hoeffding bound 1 • Direct domain: β n ( T n ) ∼ e − nr α n ( T n ) ∼ e − nH r , ⇒ r < D 1 ( ρ � σ ) = Quantum Han-Kobayashi bound 2 Converse domain: α n ( T n ) ∼ 1 − e − nH ∗ β n ( T n ) ∼ e − nr r , = ⇒ r > D 1 ( ρ � σ ) • Hoeffding divergences: α − 1 [ r − D α ( ρ � σ )] H r := sup α 0 <α< 1 α − 1 H ∗ [ r − D ∗ r := sup α ( ρ � σ )] α 1 <α 1 Hayashi; Nagaoka; Audenaert, Nussbaum, Szkoła, Verstraete; 2006 2 Mosonyi, Ogawa, 2013

  10. Quantum Rényi divergences • p, q probability distributions on X , α ∈ [0 , + ∞ ) \ { 1 } : � 1 x p ( x ) α q ( x ) 1 − α D α ( p � q ) := α − 1 log

  11. Quantum Rényi divergences • p, q probability distributions on X , α ∈ [0 , + ∞ ) \ { 1 } : � 1 x p ( x ) α q ( x ) 1 − α D α ( p � q ) := α − 1 log • Quantum Rényi divergences: 1 1 α − 1 log Tr ρ α σ 1 − α D α ( ρ � σ ) := � � α 1 1 − α 1 1 D ∗ 2 σ α ρ α ( ρ � σ ) := α − 1 log Tr ρ 2 • The right quantum extension is � D α ( ρ � σ ) , α ∈ [0 , 1) , D q α ( ρ � σ ) := D ∗ α ( ρ � σ ) , α ∈ (1 , + ∞ ] . 1 Petz 1986; Müller-Lennert, Dupuis, Szehr, Fehr, Tomamichel, 2013; Wilde, Winter, Yang, 2013

  12. Mathematical properties • Both D α and D ∗ α are monotone increasing in α α → 1 D ( v ) lim α ( ρ � σ ) = D 1 ( ρ � σ ) := D ( ρ � σ ) := Tr ρ (log ρ − log σ ) • Araki-Lieb-Thirring inequality: D ∗ α ( ρ � σ ) ≤ D α ( ρ � σ ) , α ∈ [0 , + ∞ ] Equality for α = 1 and commuting states. • Monotonicity: D α (Φ( ρ ) � Φ( σ )) ≤ D α ( ρ � σ ) , α ∈ [0 , 2] D ∗ α (Φ( ρ ) � Φ( σ )) ≤ D ∗ α ( ρ � σ ) , α ∈ [1 / 2 , + ∞ ] D q α (Φ( ρ ) � Φ( σ )) ≤ D q = ⇒ α ( ρ � σ ) , α ∈ [0 , + ∞ ]

  13. The fidelity � � α 1 1 1 − α 1 D ∗ 2 σ α ρ α ( ρ � σ ) := α − 1 log Tr ρ 2 α = 1 / 2 : � D ∗ 1 1 2 σρ α ( ρ � σ ) = − 2 log Tr ρ 2 = − 2 log F ( ρ, σ ) Operational interpretation??

  14. More Rényi divergences • In classical information theory, trade-offs in many problems are quantified by Rényi divergences and derived quantities. • How about quantum? Probably also. • Do we get any other notions of Rényi divergences apart from D α and D ∗ α ? Probably not. • What are the right (=operational) definitions of the Rényi extensions of information quantities? E.g., Rényi mutual information, Rényi capacity, Rényi conditional mutual information?

  15. More Rényi divergences I ( v ) σ B D ( v ) • Rényi mutual information: α ( A : B ) ρ := inf α ( ρ AB � ρ A ⊗ σ B ) Yes, for all quantum values. 1 Operational interpretation? Hypothesis testing H 0 : ρ ⊗ n H 1 : ρ ⊗ n A ⊗ S ( H ⊗ n vs. B ) . AB • Rényi-Holevo capacities: W : X → S ( H B ) channel � � � χ ( v ) I ( v ) α ( W ) := sup α ( X : B ) ρ X B : ρ X B = p ( x ) | x �� x | X ⊗ W ( x ) x Operational interpretation 2 for α > 1 and ( x ) = ∗ Strong converse exponent of classical-quantum channel coding. • Channel Rényi mutual information: N : A → B CPTP I ( v ) I ( v ) α ( N ) := sup α ( R : B ) N ( ψ RA ) ψ RA Partial results (Cooney, Mosonyi, Wilde, 2014) . 1 Hayashi, Tomamichel, 2014; 2 Mosonyi, Ogawa, 2014

  16. More Rényi divergences • Channel Rényi divergences: N i : A → B CPTP D ( v ) D ( v ) α ( N 1 �N 2 ) := sup α ( N 1 ( ψ RA ) �N 2 ( ψ RA )) ψ RA Operational interpretation? Trivial one for all quantum values. Non-trivial one for α > 1 , ( x ) = ∗ , and N 2 ( . ) = R σ ( . ) := σ Tr( . ) replacer channel . ( Cooney, Mosonyi, Wilde, 2014) .

  17. Binary channel discrimination • Two candidates for the identity of a channel: H 0 : N 0 , H 1 : N 1 H 0 : N ⊗ n H 1 : N ⊗ n n independent uses: , 0 1 • Adaptive discrimination strategy: Binary measurement at the end. ⇒ output N ⊗ n • Non-adaptive strategy: input ϕ R n A n = ϕ R n A n i ϕ R n A n = ϕ ⊗ n ⇒ ouput ( N i ϕ RA ) ⊗ n Product strategy: = RA

  18. Binary channel discrimination • output ρ R n B n ( N = N 0 ) σ R n B n ( N = N 1 ) or ( T n , I − T n ) at the end measurement • error probabilities: β x ε ( N ⊗ n �N ⊗ n ) := inf { Tr σ R n B n T n : Tr ρ R n B n ( I − T n ) ≤ ε } 0 1 � Tr ρ R n B n ( I − T n ) : Tr σ R n B n T n ≤ 2 − nr � r ( N ⊗ n �N ⊗ n α x ) := inf 0 1 x = pr or x = ad

  19. Trade-off exponents with product strategies • error probabilities: ε ( N ⊗ n �N ⊗ n β x ) := inf { Tr σ R n B n T n : Tr ρ R n B n ( I − T n ) ≤ ε } 0 1 � Tr ρ R n B n ( I − T n ) : Tr σ R n B n T n ≤ 2 − nr � α x r ( N ⊗ n �N ⊗ n ) := inf 0 1 • If only product strategies are allowed: x = pr n → + ∞ − 1 n log β x ε ( N ⊗ n �N ⊗ n lim ) = D ( N 0 �N 1 ) 0 1 := sup D ( N 0 ( ψ RA ) �N 1 ( ψ RA )) , ψ RA n → + ∞ − 1 n log α x lim n,r = H r ( N 0 �N 1 ) := sup H r ( N 0 ( ψ RA ) �N 1 ( ψ RA )) , ψ RA n → + ∞ − 1 n log(1 − α x n,r ) = H ∗ lim r ( N 0 �N 1 ) ψ RA H ∗ := inf r ( N 0 ( ψ RA ) �N 1 ( ψ RA )) ,

  20. Channel divergences • Channel Hoeffding (anti-)divergences: H r ( N 0 �N 1 ) = sup H r ( N 0 ( ψ RA ) �N 1 ( ψ RA )) , ψ RA H ∗ ψ RA H ∗ r ( N 0 �N 1 ) = inf r ( N 0 ( ψ RA ) �N 1 ( ψ RA )) , • alternative expressions (due to minimax) α − 1 H r ( N 0 �N 1 ) = sup [ r − D α ( N 0 �N 1 )] , α 0 <α< 1 α − 1 H ∗ [ r − D ∗ r ( N 0 �N 1 ) = sup α ( N 0 �N 1 )] , α 1 <α where D α ( N 0 �N 1 ) and D ∗ α ( N 0 �N 1 ) are the channel Rényi divergences: D α ( N 0 �N 1 ) := sup D α ( N 0 ( ψ RA ) �N 1 ( ψ RA )) , ψ RA D ∗ D ∗ α ( N 0 �N 1 ) := sup α ( N 0 ( ψ RA ) �N 1 ( ψ RA )) . ψ RA

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend