adaptive surrogate modeling for response surface
play

Adaptive Surrogate Modeling for Response Surface Approximations with - PowerPoint PPT Presentation

Adaptive Surrogate Modeling for Response Surface Approximations with Application to Bayesian Inference Serge Prudhomme a and C. Bryant b a Department of Mathematics, Ecole Polytechnique de Montr eal SRI Center for Uncertainty Quantification,


  1. Adaptive Surrogate Modeling for Response Surface Approximations with Application to Bayesian Inference Serge Prudhomme a and C. Bryant b a Department of Mathematics, Ecole Polytechnique de Montr´ eal SRI Center for Uncertainty Quantification, KAUST b ICES, The University of Texas at Austin, USA Advances in UQ Methods, Algorithms, and Applications KAUST, Thuwal, Saudi Arabia January 6-9, 2015 S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 1 / 35

  2. Outline Outline • Introduction. • Error estimation for PDEs with uncertain coefficients. • Adaptive scheme. • Numerical examples. • Application to Bayesian Inference. “. . . It is not possible to decide (a) between h or p refinement and (b) whether one should enrich the approximation space V h or S h . . . better approaches, yet to be conceived, are consequently needed.” Spectral Methods for Uncertainty Quantification, Le Maˆ ıtre & Knio 2010 S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 2 / 35

  3. Introduction Introduction A ( λ ; u ) = f ( λ ) → Q ( u ( λ )) A h ( λ ; u h ) = f h ( λ ) → Q ( u h ( λ )) � �� � � �� � M ( λ )= Q ( u ) M h ( λ )= Q ( u h ) Q h,N ( u ) Q N ( u ) λ 2 λ 2 λ λ 1 1 Surrogate model M N Surrogate model M h,N M h ≈ M h,N ( λ ) = Q ( u h,N ) M ≈ M N ( λ ) = Q ( u N ) S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 3 / 35

  4. Introduction References Le Maˆ ıtre et al., 2007, 2010 ◮ Polynomial chaos, Stochastic Galerkin, Burger’s equation Almeida and Oden, 2010 ◮ convection-diffusion, sparse grid collocation Butler, Dawson, and Wildey, 2011 ◮ Stochastic Galerkin, PC representation of the discretization error (ignore truncation error) Butler, Constantine, and Wildey, 2012 ◮ Ignore physical discretization error, pseudo-spectral projection, improved linear functional . . . S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 4 / 35

  5. Model Problem Model Problem and Discretization Model Problem: A ( λ ; u ) = f ( λ ) , ∀ x ∈ D Assume: λ = Λ( θ ) = � k ∈I N λ k Ψ k ( ξ ( θ )) Non-intrusive approach (“pseudo-spectral projection method”): � � u m k ( x )Ψ k ( ξ ) := u N ( x , ξ ) u ( x , ξ ) ≈ u k ( x )Ψ k ( ξ ) ≈ k ∈I N k ∈I N with � u k ( x ) = � u ( x , · ) , Ψ k � := u ( x , ξ )Ψ k ( ξ ) ρ ( ξ ) d ξ Ω m ( N ) � u ( x , ξ j ) Ψ k ( ξ j ) w j := u m ≈ k ( x ) j =1 Pros: fast convergence, sampling-like u ( x , ξ j ) , choice of ξ j S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 5 / 35

  6. Model Problem Model Problem and Discretization Gaussian quadrature: • select quadrature rule { ξ j , w j } m ( N ) according to ρ ξ j =1 • integrand ( u N Ψ N ) is at least of order 2 N in each dimension m ( N ) ≥ ( N + 1) n Parameterized discrete solution (the surrogate model): Solve for u h ( x , ξ j ) → u h,m ( x ) = � m ( N ) u h ( x , ξ j ) Ψ k ( ξ j ) w j k j =1 � u h,N ( x , ξ ) = u h,m ( x )Ψ k ( ξ ) k k ∈I N Evaluate: � u h,N � Q ξ ( u ) − Q ξ S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 6 / 35

  7. Goal-oriented error estimation Goal-oriented error estimation Weak formulation of A ( λ ( ξ ); u ) = f ( ξ ) Find u h ( ξ ) ∈ V h ⊂ V such that Find u ( ξ ) ∈ V such that ∀ v h ∈ V h B ξ ( u h , v h ) = F ξ ( v h ) B ξ ( u, v ) = F ξ ( v ) ∀ v ∈ V Quantity of interest (QoI): Adjoint problem: � Find p ( · , ξ ) ∈ V such that Q ξ ( u ) = q ( x ) u ( x , ξ ) d x B ξ ( v, p ) = Q ξ ( v ) ∀ v ∈ V D Error representation Q ξ ( u ) − Q ξ ( u h ) = F ξ ( p ) − B ξ ( u h , p ) := R ξ ( u h ; p ) � � Note: Q ξ ( u ) − Q ξ ( u h ) = R ξ ( u h ; p ) + ∆ B ≈ R ξ ( u h ; p ) S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 7 / 35

  8. Goal-oriented error estimation Goal-oriented error estimation Error estimator: Q ξ ( u ) − Q ξ ( u h ) = R ξ ( u h ; p ) ≈ η ( ξ ) Orthogonality property: If p h ∈ V h then R ξ ( u h ; p h ) = 0 Higher-order approximation of adjoint solution: Compute p + ( ξ ) ∈ V + , V h ⊂ V + ⊂ V and η ( ξ ) = R ξ ( u h ; p + ) Other choices • Local interpolation: R ξ ( u h ; p ) ≈ R ξ ( u h ; π + p h − p h ) • Residual based: R ξ ( u h ; p ) = B ξ ( e u , e p ) ≈ � η u ( ξ ) η p ( ξ ) 1 Becker & Rannacher 2001, Oden & Prudhomme, 2001 S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 8 / 35

  9. Goal-oriented error estimation Case with Uncertain Parameters Since u h,N ( · , ξ ) ∈ V h ⊂ V , the adjoint equation still holds � � � u h,N � u h,N , p B ξ = Q ξ New error representation: � � � u h,N � Q ξ u − Q ξ � � u h,N ; p = R ξ � u h,N ; p + � � u h,N ; p − p + � = R ξ + R ξ � u h,N ; p + ,N � � u h,N ; p + − p + ,N � � u h,N ; p − p + � = R ξ + R ξ + R ξ Total Error Estimate: � � � u h,N � � u h,N ; p + ,N � Q ξ u − Q ξ ≈ R ξ 1 Butler et al., 2012, Almeida and Oden, 2010 S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 9 / 35

  10. Goal-oriented error estimation Proposed error decomposition u h − u h,N � � � � u h,N � � u − u h � � � � Q ξ u − Q ξ = Q ξ + Q ξ + ∆ Q ξ � �� � � �� � error due to error due to approx physical discretization in parameter space Total error: � 2 × poly. eval � � � u h,N � � u h,N ; p + ,N � Q ξ u − Q ξ ≈ R ξ := E ( ξ ) 1 × inner product Physical space discretization error: � 2 × pde solve � � � u h � � u h ; p + � := E D ( ξ ) Q ξ u − Q ξ ≈ R ξ 1 × inner product Parameter space discretization error: � u h − u h,N � � u h,N ; p + ,N � � u h ; p + � := E Ω ( ξ ) Q ξ ≈ R ξ − R ξ S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 10 / 35

  11. Goal-oriented error estimation Summary of the procedure • Solve forward and adjoint problems at quadrature points, � � m ( N ) u h ( x , ξ j ) j =1 � u h ; p + � → R ξ j { p + ( x , ξ j ) } m ( N ) j =1 • Construct fully discrete solutions and PC expansion for E D u h,N ( x , ξ ) = � k ∈I N u h,m ( x )Ψ k ( ξ ) � k E D ( ξ ) = e D k Ψ k ( ξ ) p + ,N ( x , ξ ) = � k ∈I N p + ,m ( x )Ψ k ( ξ ) k ∈I N k • Construct E and E Ω � E Ω ( ξ ) = E ( ξ ) − E D ( ξ ) E ( ξ ) = e k Ψ k ( ξ ) k ∈I M S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 11 / 35

  12. Adaptive Strategy Adaptivity Strategy � � E D � � � E Ω � � > if � Refine physical approximation space V h ( h ← h 2 ) else Refine random approximation space S N ( N ← N + 1 ) end • for a given physical mesh, refine approximation in Ω to the level of physical discretization error • use error indicator to guide h refinement in parameter space • anisotropic p -refinement in higher dimensions S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 12 / 35

  13. Numerical results Example 1: Smooth response surface in 2D Convection-diffusion problem in 2D: � π � 10 sin � � 2 ξ 1 in D = (0 , 1) 2 −∇ · (2 ∇ u ) + · ∇ u = f ( ξ ) 10 cos ( πξ 2 ) u = 0 on ∂D Loading f is chosen such that, with ξ 1 , ξ 2 ∼ U (0 , 1) : � ξ 1 ( x − ξ 1 ) 2 �� ξ 2 ( y − ξ 2 ) 2 � ξ 1 ( x − x 2 ) e − 20 ξ 2 ( y − y 2 ) e − 20 u ( x, y, ξ ) = 400 Quantity of interest: � 1 � 1 � Q ( u ( · , ξ )) = 1 u ( x, y, ξ ) dxdy ≈ q ( x, y ) u ( x, y, ξ ) dxdy 4 0 . 5 0 . 5 D S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 13 / 35

  14. Numerical results Example 1: Effectivity indices �E� L 2 �E Ω � L 2 �E D � L 2 �E� L 2 Ω � Q ( u ) − Q ( u h,p,N ) � L 2 Ω Ω Ω Ω 5.12427e-01 3.28574e-03 4.34727e-01 .851 1.79962e-01 3.48349e-03 1.95149e-01 .782 5.23817e-02 6.59002e-03 4.25596e-02 .921 2.30547e-02 3.77558e-03 2.85842e-02 .949 6.17006e-03 5.77325e-03 8.41438e-03 .998 2.21929e-03 4.48790e-03 7.25161e-03 .987 2.20458e-03 3.98680e-04 2.80610e-03 .984 7.00606e-04 4.31703e-04 9.24221e-04 .990 3.58282e-04 4.13817e-04 8.06397e-04 1.01 3.58118e-04 1.47612e-04 5.17592e-04 1.03 1.38497e-04 1.49756e-04 2.71081e-04 1.11 8.78811e-05 2.61145e-05 1.06502e-04 1.02 5.10997e-05 2.59334e-05 7.73100e-05 1.00 1.34534e-05 2.59640e-05 3.87553e-05 .985 1.33674e-05 1.22096e-05 2.57607e-05 .981 S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 14 / 35

  15. Numerical results Example 2: Response surface with discontinuity Convection-diffusion model in 2D: � sin( 3 π � 2 ξ 1 ) in D = (0 , 1) 2 − 2∆ u + · ∇ u = f ( ξ ) 4 ⌊ ξ 2 − ξ 1 ⌋ u = 0 on ∂D Loading f is chosen so that � 3 π �� � · ( x − x 2 )( y − y 2 ) u ( x, y, ξ ) = 10 sin 2 ξ 1 4 ⌊ ξ 2 − ξ 1 ⌋ where � 0 ξ 1 ≤ ξ 2 ⌊ ξ 2 − ξ 1 ⌋ = − 1 ξ 1 > ξ 2 with ξ 1 , ξ 2 ∼ U (0 , 1) . S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 15 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend