r 0 r 1 r 2
play

R 0 R 1 R 2 . . . Non parametric version: empirical null space - PowerPoint PPT Presentation

Modal filtering data reduction Introduction and subspace detection Usefulness of global vibration-based SHM methods for handling the temperature effect in SHM Limitations due to temperature effects on the dynamics of civil engineering


  1. Modal filtering data reduction Introduction and subspace detection • Usefulness of global vibration-based SHM methods for handling the temperature effect in SHM • Limitations due to temperature effects on the dynamics of civil engineering structures Houssein Nasser • A statistical subspace-based damage detection algorithm: LTI , Centre de Recherche Henri Tudor, Luxembourg null space of a matrix built on reference modes/modeshapes Arnaud Deraemaeker Non parametric version: null space of a matrix built on reference data set ULB , Active Structures Laboratory, Brussels, Belgium • Limitations: large sensors arrays Laurent Mevel, Mich` ele Basseville • For handling large sensors arrays and temperature effect: IRISA (CNRS & INRIA & Univ.), Rennes, France no temperature measurement, data reduction using modal filtering, empirical merging of non parametric null spaces michele.basseville@irisa.fr -- http://www.irisa.fr/sisthem/ 1 2 Parametric subspace-based damage detection  X k +1 = F X k + V k F ϕ λ = λ ϕ λ   Content           ∆   Y k = H X k φ λ = H ϕ λ     Parametric subspace-based damage detection    R 0 R 1 R 2 . . .  Non parametric version: empirical null space       R 1 R 2 R 3 . . .   ∆  Y k Y T ∆   ,    R i = E = H     k − i  R 2 R 3 R 4 . . .  Merging multiple measurements setups       . . ... .  . . .  . . .     Modal filters R i = H F i G = ⇒ H = O C Example: three-span bridge � G  H  C ∆ F 2 G = F G . . . �  HF    O ∆ =   , Conclusion  HF 2      G ∆ � � X k Y T . = E   .  .  k H − → O − → ( H, F ) − → ( λ, φ λ ) 3 4

  2.   Λ modes θ ∆ Non parametric version: empirical null space Canonical parameter : =     vec Φ mode shapes    Φ    Φ∆ Reference data set for safe structure     Observability in modal basis : O p +1 ( θ ) = .   .  .      Φ∆ p   H (0) = 0 Left null space: ˆ S T 0 ˆ S 0 T ˆ ˆ S 0 = I s , θ 0 : reference parameter for safe structure Left null space: S T S = I s , S T O p +1 ( θ 0 ) = 0 Y k : N -size sample of new measurements Y k : N -size sample of new measurements Residual for SHM: Residual for SHM: ∆ S 0 T = vec( ˆ ˆ ζ N H ) = vec( S T ( θ 0 ) ˆ ζ N ( θ 0 ) ∆ H ) Σ : covariance of ζ J ( θ 0 ) : sensitivity of residual ζ w.r.t. modal changes χ 2 -test: ζ T N Σ − 1 ζ N ≥ h Non param. subspace detection N Σ − 1 J ( J T Σ − 1 J ) − 1 J T Σ − 1 ζ N ≥ h χ 2 -test: ζ T 5 6 Merging multiple data sets at different temperatures Data reduction using modal filtering sensor array H (0) j =1 H (0) ,j ∆ � J linear combiner J reference data sets : = 1 /J p +1 ,q p +1 ,q y 1 ë 1 ++ y) S 0 T H (0) y 2 z( structure ë 2 Global empirical null space: p +1 ,q = 0 � � � � � � + . . . y n Y k : N -size sample of new measurements ë f s n s Residual for SHM: z l orthogonal to the N modes in a frequency band of interest except mode l . More sensors than modes. ∆  S 0 T  ˆ  ζ N = vec H  Φ T α = I ; Φ T rank deficient − → SVD Σ : covariance of ζ Z = α Y , dim( Z ) < dim( Y ) N Σ − 1 ζ N ≥ h χ 2 -test: ζ T Robust subspace detection Non parametric & robust subspace detection on Z . 7 8

  3. Example - Simulated three-span bridge Non parametric subspace detection • A simulator provided by ULB Two materials: steel and concrete Contrast of non−parametric test Contrast of non−parametric test Excitation: uniform pressure on the first span Contrast − level d 4 Contrast − level d 4 2 2 10 10 Contrast − level d 3 Contrast − level d 3 Motion restricted to in-plane vibrations Contrast − level d 2 Contrast − level d 2 Contrast − level d 1 Contrast − level d 1 1 1 10 10 • Both hand sides subject to different temperature gradients Contrast Contrast 0 0 • Four damage scenarios: stiffness reduction at three locations 10 10 T=-15 to 45°C −1 −1 10 10 −10 0 10 20 30 40 −10 0 10 20 30 40 T=-15 to 0°C ° C ° C Temperature Temperature Contrast between the undamaged and the four damage levels. Uniform pressure Concrete Concrete DL2 DL3 Using 29 sensors (left). Using 10 filters (right). Damage DL1 Damage Damage 9 10 Conclusion Robust subspace detection Temperature effect & large sensors arrays in vibration-based SHM Contrast of robust subspace detection Contrast of robust subspace detection 9 4 10 10 Contrast − level d 4 Contrast − level d 4 Statistical non parametric approach Contrast − level d 3 Contrast − level d 3 Contrast − level d 2 Contrast − level d 2 Contrast − level d 1 Contrast − level d 1 8 3 10 10 Statistical subspace-based damage detection algorithm Contrast Contrast 7 2 Empirical null space merging data at # temperatures 10 10 Modal filters for data reduction 6 1 10 10 −10 0 10 20 30 40 −10 0 10 20 30 40 ° C ° C Temperature Temperature Example: simulated three span bridge Contrast between the undamaged and the four damage levels. Ongoing: sensor noise effect Using 29 sensors (left). Using 10 filters (right). Future: in-operation examples, comparison with other methods 11 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend