quenching to field stabilized
play

Quenching to field-stabilized Adam Iaizzi* Postdoctoral Fellow - PowerPoint PPT Presentation

J24.00013 Quenching to field-stabilized Adam Iaizzi* Postdoctoral Fellow magnetization plateaus in the National Taiwan University unfrustrated Ising antiferromagnet Better title: Stable frozen states without disorder


  1. J24.00013 Quenching to field-stabilized Adam Iaizzi* Postdoctoral Fellow magnetization plateaus in the National Taiwan University unfrustrated Ising antiferromagnet 臺灣⼤學 Better title: Stable frozen states without disorder *iaizzi@bu.edu 1

  2. Adam Iaizzi - iaizzi@bu.edu 2D Ising AFM 1 Exact, T=0 0.9 H = J ∑ σ i σ j − h ∑ σ i 0.8 ❖ 0.7 ⟨ i , j ⟩ i 0.6 ❖ Square lattice m 0.5 0.4 ❖ Antiferromagnet 0.3 0.2 ❖ 2-fold degenerate GS 0.1 ❖ T c = 2.26… 0 0 1 2 3 4 5 h ❖ Simplest model with PT ( 0 h < 4 ❖ With field: poorly studied m ( T = 0 , h ) = 1 h > 4 2

  3. Adam Iaizzi - iaizzi@bu.edu Dynamics ❖ Metropolis Monte Carlo 1 ❖ Single-spin-flip updates Exact, T=0 0.9 0.8 ❖ Choose spin at random 0.7 ❖ Flip with probability 0.6 P = min [ 1, e −Δ E / T ] m 0.5 0.4 ❖ Quench: 0.3 0.2 ❖ Start from (totally T = ∞ 0.1 random) state 0 0 1 2 3 4 5 h ❖ Instant quench to T ❖ What happens? 3

  4. Adam Iaizzi - iaizzi@bu.edu Actual behavior ❖ Instantaneous quench to 1.0 = 2 finite T<T c = 4 0.8 = 8 ❖ High T: EQ = 16 0.6 = 64 ❖ Low T: Non-ergodic m 0.4 ❖ Plateaus ❖ Stable frozen states 0.2 ❖ No intrinsic disorder 0.0 0 1 2 3 4 5 ❖ Valleys of ergodicity h 4

  5. Adam Iaizzi - iaizzi@bu.edu Zero temperature magnetization 1.0 8 0 h = 0 , = 2 > > 0 . 057 0 < h < 2 J, > > = 4 > 0.8 > > 0 h = 2 J, = 8 < m ( T = 0 , h ) = = 16 0 . 282 2 J < h < 4 J, > 0.6 = 64 > > 0 . 55 h = h s = 4 J, > > m > > : 1 h > h s . 0.4 0.2 ❖ Ergodic for h = 0, ± 2, ± 4 0.0 0 1 2 3 4 5 ❖ From now on: T = 0 h 5

  6. Adam Iaizzi - iaizzi@bu.edu What is happening? Second plateau: h = 3 First plateau: h = 1 View animations online: http://bit.ly/iaizziTPS 6

  7. n e d fi n Adam Iaizzi - iaizzi@bu.edu o Freezing Mechanism C x = +1 x = -1 + + h>4 _ x = σ i = ± 1 + + y = +4 + + + h<4 + + X y = σ j = 0 , ± 2 , ± 4 + + _ h>2 j + + + + + y = +2 _ _ h<2 h 1 , e � ( y � h ) ∆ x/T i + + P = min h>0 _ y = 0 + + + h=0 + + _ + y = -2 ❖ 10 local spin configurations ❖ 5 pairs _ y = -4 + 7

  8. Adam Iaizzi - iaizzi@bu.edu Zero temperature dynamics x = +1 x = -1 Δ E = ( y − h ) Δ x + + h>4 _ + + y = +4 + + + h<4 + + dynamics: + + T = 0 ❖ _ h>2 + + + + + y = +2 _ _ ❖ Accept if h<2 Δ E ≤ 0 + + ❖ Reject if Δ E > 0 h>0 _ y = 0 + + + h=0 : reversible update Δ E = 0 ❖ + + _ + y = -2 ❖ Reversible updates when h = y = 0, ± 2, ± 4 _ y = -4 + ❖ Valleys of ergodicity 8

  9. Adam Iaizzi - iaizzi@bu.edu h = 0 ❖ Maps onto ferromagnet ❖ Bulk domains and straight domain walls stable quench, stuck in stripe T = 0 ❖ FIG. 13. Relaxation of a stripe state in two dimensions at small state w/ P = 0.3390... nonzero temperature: � a � nucleation of a dent � freely flippable spins are indicated � ; � b � diffusive growth of the dent; � c � dent reaches the system size and hence the domain wall steps to the left. This overall ❖ Connection to critical process ultimately leads to the disappearance of the stripe. percolation theory ❖ Otherwise reach G.S. Spirin, Krapivsky, Redner, PRE 65 016119 (2001) Barros, Krapivsky, Redner, PRE 80 040101(R) (2009) 9

  10. Adam Iaizzi - iaizzi@bu.edu First plateau - + - + - + - + + - + - + - + - + + - + + - + + - + - + - + - + - + - + - - + - - + - - + - + - + - + - + - + - + + - + + - + + - + - + - + - + - + - + - - + - - + - - + - + - + - + - + - + - + + - + 0 < h < 2 J ❖ + - + + - + - + + - + + - + - + - + + - - + + - + - + - - + - + + - + - + - - + + - - + - + - + + - + - + + - + - + + - ❖ Corner domain walls now - + + - + - + - - + - + - - + - + + - + + - - + - + - + + - + - + + - + + - + - stable - + + - + - + - + + - + - - + - - + - + + - + + - + - + - - + - + + - + + - + - - + - + - + + - + + - + - + - + - + - + ❖ Corners host excess + spin - + + - + - - + + - + - + - + - + - + + + - + + - + + - - + - + - + + - + - + - - + - + - + - + + - + - + + - + - + - + ❖ Net magnetization 0.057 + - + - + - + + - + - + - - + - + - + - - + - + - + + - + - + - + + - + - + - + + + - + - + - + - + + - + - + - + - + - + - + - + - + - + + - + - + - + - + + - 10

  11. Adam Iaizzi - iaizzi@bu.edu Second plateau - + + - + - + + - + - + - + - + + - + + + + - + - + + - + - + + + - + + - + + - + - + - + - + + - + + - + + - + + + - + - + - + - + - + + - + + + - + + - + + + + - + - + - + + - + - + - + + - + + - + ❖ Straight line DW not stable + + - + + + + - + - + - + - + + + - + - - + + + - + + + - + - + - + - + + + - + + + - + + + - + + + + - + - + + - + + - - + + + + - + + + - + + - + - + + - + + ❖ Corners/diagonal DW stable + - + - + + + - + + + - + - + - + + + - - + - + + + - + - + - + + + - + - + - + + - + + - + + + + - + + - + + - + - + - ❖ Excess + spin along DW - + + - + - + - + + + - + + - + + + - + + + - + + + + + + - + + - + + + - + + - + - + + - + - + - + + - + - + - + + - + ❖ Net magnetization 0.282 + + - + + - + - + + - + - + - + - + + - - + + - + + - + - + + - + - + - + - + + + + - + - + + - + - + + - + + + - + - + + + + - + - + + - + - + + + - + + - + - + - + + - + + - + - + - + - + - + + - + 11

  12. Adam Iaizzi - iaizzi@bu.edu h = h s ❖ Does not freeze + + - + + + - + + - + + + + - + + - + - + - + + + + + - + + + + + - + + - + - + + + + + + + - + - + + - + + + + + - + - - + + + + - + - + + - + - + + + - + + + ❖ Vanishing dependence T + + + - + + - + + + + + + - + - + + + - - + - + - + + + + - + + + + - + + + + + + + + + + + + + + + - + + - + + + - + + ❖ Coexistence of + + + - + - + + - + + + + + - + + + + + - + + + + + + + + + + - + + + - + + - + + - + + + + - + - + + + + + - + + + + - + + - + - + + + + + - + + + + - + - + + ❖ 2x AFM G.S. + + + - + - + + + + + - + + + + + + + + + - + + - + + + - + + + + - + - + - + - + + + + + + + - + - + + + + - + - + - + ❖ Fully-polarized state + - + + + - + + - + + - + - + - + + + + - + - + - + + + + + - + + + + + + + + + + - + + + + + - + - + + - + + + + - + + ❖ Equivalent to hard-squares + + + - + - + + - + + - + + + + - + - + + + - + + + + - + + + + - + + + + - + - + - + - + + + + + + + + + + + + + + + + problem 12

  13. Conclusions 1.0 = 2 ❖ Instantaneous quenches in Ising AFM + field = 4 0.8 = 8 = 16 ❖ Stable plateaus without disorder 0.6 = 64 m ❖ In plateau: all spins unflippable 0.4 ❖ Describe in terms of stable local configurations 0.2 ❖ Ergodicity restored when updates available Δ E = 0 0.0 0 1 2 3 4 5 h ❖ Useful for understanding when MC fails ❖ Monte Carlo dynamics physical dynamics ≠ ❖ We choose the dynamics ❖ Plateau states are local energy minima under these dynamics ❖ Choosing dynamics rearranges energy surface 13

  14. Open Questions ❖ Enumerate plateau states? ❖ Connect to percolation theory? ❖ Derive magnetization in plateaus ❖ What is the finite-T scaling of “valleys of ergodicity”? ❖ Other lattices? ❖ Other dynamics?

  15. Thanks for your attention! Contact: Preprint available: Adam Iaizzi arXiv:2001.09268 email: iaizzi@bu.edu or scan QR code web: www.iaizzi.me 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend