quasi statistical manifolds and geometry of affine
play

Quasi-Statistical Manifolds and Geometry of Affine Distributions - PowerPoint PPT Presentation

Quasi-Statistical Manifolds and Geometry of Affine Distributions Hiroshi Matsuzoe Nagoya Institute of Technology / RIKEN Brain Science Institute joint works with Takashi Kurose Kwansei Gakuin University 1 Statistical manifolds 2 Affine


  1. Quasi-Statistical Manifolds and Geometry of Affine Distributions Hiroshi Matsuzoe Nagoya Institute of Technology / RIKEN Brain Science Institute joint works with Takashi Kurose Kwansei Gakuin University 1 Statistical manifolds 2 Affine immersions 3 Quasi-statistical manifolds and statistical manifolds admitting torsion (SMAT) 4 Affine distributions

  2. Geometry of Affine Distributions 2 1 Statistical manifolds M : a manifold (an open domain in R n ) h : a (semi-) Riemannian metric on M ∇ : an affine connection on M ✓ ✏ Definition 1.1 (Kurose) We say that the triplet ( M, ∇ , h ) is a statistical manifold def ⇐ ⇒ ( ∇ X h )( Y, Z ) = ( ∇ Y h )( X, Z ) . ✒ ✑ C ( X, Y, Z ) := ( ∇ X h )( Y, Z ), the cubic form, the skewness tensor field ✓ ✏ Definition 1.2 ∇ ∗ : the dual connection of ∇ with respect to h def Xh ( Y, Z ) = h ( ∇ ∗ ⇐ ⇒ X Y, Z ) + h ( Y, ∇ X Z ) . ✒ ✑ ( M, ∇ ∗ , h ): the dual statistical manifold of ( M, ∇ , h ). ✓ ✏ Remark 1.3 (Original definition by S.L. Lauritzen) ( M, g ) : a Riemannian manifold : a totally symmetric (0 , 3)-tensor field C We call the triplet ( M, g, C ) a statistical manifold. ✒ ✑

  3. Geometry of Affine Distributions 3 Example 1.4 (Normal distributions) ( l ( x ; ξ ) = log p ( x, ξ ) ) M = { p ( x ; ξ ) | ξ = ( ξ 1 , ξ 2 ) = ( µ, σ ) , ] } [ ] [ − ( x − ξ 1 ) 2 − ( x − µ ) 2 1 1 √ p ( x ; ξ ) = 2 π ( ξ 2 ) 2 exp = √ 2 πσ 2 exp 2( ξ 2 ) 2 2 σ 2 We regard that M is a manifold with local coordinates ( µ, σ ) . ( ∂ ) ( ∂ ) ∫ ∞ g ij = ∂ξ i log p ( x, ξ ) ∂ξ j log p ( x, ξ ) p ( x, ξ ) dx −∞ [ ∂l ] ( ( 1 0 )) g = − 1 ∂l = E the Fisher information 0 2 σ 2 ∂ξ i ∂ξ j [ ∂l ] ∂l ∂l C ijk = E the skewness or the cubic form ∂ξ i ∂ξ j ∂ξ k [ ] ( ) ∂ 2 l ij,k − 1 ∂l ∇ (0) : the Levi-Civita = Γ (0) Γ ij,k = E 2 C ijk connection w.r.t. g ∂ξ i ∂ξ j ∂ξ k [ ] ∂ 2 l ij,k + 1 ∂ξ k + ∂l ∂l ∂l ∂l = Γ (0) Γ ∗ ij,k = E 2 C ijk ∂ξ i ∂ξ j ∂ξ i ∂ξ j ∂ξ k ( M, ∇ , g ) and ( M, ∇ ∗ , g ) are statistical manifolds.

  4. Geometry of Affine Distributions 4 2 Affine immersions f : M → R n +1 : an immersion ξ : a local vector field along f ✓ ✏ Definition 2.1 { f, ξ } : M → R n +1 is an affine immersion def ⇐ ⇒ For an arbitrary point p ∈ M , T f ( p ) R n +1 = f ∗ ( T p M ) ⊕ R { ξ p } ξ : a transversal vector field ✒ ✑ D : the standard flat affine connection on R n +1 D X f ∗ Y = f ∗ ( ∇ X Y ) + h ( X, Y ) ξ, D X ξ = − f ∗ ( SX ) + τ ( X ) ξ. ✓ ✏ def f : non-degenerate ⇐ ⇒ h : non-degenerate def { f, ξ } : equiaffine ⇐ ⇒ τ = 0 ✒ ✑

  5. Geometry of Affine Distributions 5 ✓ ✏ Proposition 2.2 { f, ξ } : non-degenerate, equiaffine = ⇒ ( M, ∇ , h ) is a statistical manifold. ✒ ✑ Fundamental structural equations for affine immersions Gauss equation: R ( X, Y ) Z = h ( Y, Z ) SX − h ( X, Z ) SY Codazzi equations: ( ∇ X h )( Y, Z ) + τ ( X ) h ( Y, Z ) = ( ∇ Y h )( X, Z ) + τ ( Y ) h ( X, Z ) ( ∇ X S )( Y ) − τ ( X ) SY = ( ∇ Y S )( X ) − τ ( Y ) SX Ricci equation: h ( X, SY ) − h ( Y, SX ) = ( ∇ X τ )( Y ) − ( ∇ Y τ )( X ) ✓ ✏ def f : non-degenerate ⇐ ⇒ h : non-degenerate def { f, ξ } : equiaffine ⇐ ⇒ τ = 0 ✒ ✑

  6. Geometry of Affine Distributions 6 3 Quasi-statistical manifolds M : a manifold (an open domain in R n ) : a non-degenerate (0 , 2)-tensor field on M h ∇ : an affine connection on M T ∇ ( X, Y ) = ∇ X Y − ∇ Y X − [ X, Y ]: the torsion tensor of ∇ Definition 3.1 ( M, ∇ , h ): a quasi-statistical manifold def ( ∇ X h )( Y, Z ) − ( ∇ Y h )( X, Z ) = − h ( T ∇ ( X, Y ) , Z ) ⇐ ⇒ In addition, if h is a semi-Riemannian metric, then we say that ( M, ∇ , h ) is a statistical manifold admitting torsion (SMAT). ✓ ✏ Definition 3.2 ∇ ∗ : (quasi-) dual connection of ∇ with respect to h def Xh ( Y, Z ) = h ( ∇ ∗ ⇐ ⇒ X Y, Z ) + h ( Y, ∇ X Z ) . ✒ ✑ ✓ ✏ Proposition 3.3 The dual connection ∇ ∗ of ∇ is torsion free. ✒ ✑ We remark that ( ∇ ∗ ) ∗ ̸ = ∇ in general.

  7. Geometry of Affine Distributions 7 ✓ ✏ Proposition 3.4 If h is symmetric h ( X, Y ) = h ( Y, X ) or skew-symmetric h ( X, Y ) = − h ( Y, X ) ⇒ ( ∇ ∗ ) ∗ = ∇ = ✒ ✑ ✓ ✏ Proposition 3.5 ( M, ∇ ∗ , h ) : ∇ ∗ is torsion free and dual of ∇ , h is a non-degenerate (0 , 2) -tensor field, = ⇒ ( M, ∇ , h ) is a quasi-statistical manifold. ✒ ✑ ✓ ✏ Suppose that ( M, ∇ , h ) is a statistical manifold admitting torsion. (1) ( M, ∇ , h ) is a Hessian manifold R ∇ = 0 and T ∇ = 0 ⇐ ⇒ ( M, h, ∇ , ∇ ∗ ) is a dually flat space. ⇐ ⇒ (2) ( M, ∇ , h ) is a space of distant parallelism ( R ∇ ∗ = 0 , T ∇ ∗ = 0). R ∇ = 0 and T ∇ ̸ = 0 ⇐ ⇒ ✒ ✑

  8. Geometry of Affine Distributions 8 SMAT with the SLD Fisher metric (Kurose 2007) Herm( d ) : the set of all Hermitian matrices of degree d . S : a space of quantum states S = { P ∈ Herm( d ) | P > 0 , trace P = 1 } T P S ∼ = A 0 A 0 = { X ∈ Herm( d ) | trace X = 0 } We denote by � X the corresponding vector field of X . ✓ ✏ For P ∈ S , X ∈ A 0 , define ω P ( � X ) ( ∈ Herm( d )) by X = 1 2( P ω P ( � X ) + ω P ( � X ) P ) The matrix ω ( � X ) is the “symmetric logarithmic derivative”. ✒ ✑ A Riemannian metric and an affine connection are defined as follows: ( ) Y ) = 1 h P ( � X, � P ( ω P ( � X ) ω P ( � Y ) + ω P ( � Y ) ω P ( � 2trace X )) , ( ) Y ) P − 1 X � P = h P ( � X, � 2( Xω P ( � Y ) + ω P ( � ∇ � Y Y ) X ) . The SMAT ( S , ∇ , h ) is a space of distant parallelism. ( R = R ∗ = 0 , T ∗ = 0 , but T ̸ = 0)

  9. Geometry of Affine Distributions 9 4 Affine distributions ω : T M → R n +1 : a R n +1 -valued 1-form ξ : M → R n +1 : a R n +1 -valued function ✓ ✏ Definition 4.1 { ω, ξ } is an affine distribution def ⇐ ⇒ For an arbitrary point p ∈ M , R n +1 = Image ω p ⊕ R { ξ x } ξ : a transversal vector field ✒ ✑ ✓ ✏ { f, ξ } : an affine immersion = ⇒ { d f, ξ } : an affine distribution ✒ ✑ Xω ( Y ) = ω ( ∇ X Y ) + h ( X, Y ) ξ, Xξ = − ω ( SX ) + τ ( X ) ξ. ∇ : an affine connection ( T ∇ ( X, Y ) ̸ = 0 in general) h : a (0 , 2)-tensor field ( h ( X, Y ) ̸ = h ( Y, X ) in general) S : a (1 , 1)-tensor field : a 1-form τ

  10. Geometry of Affine Distributions 10 Xω ( Y ) = ω ( ∇ X Y ) + h ( X, Y ) ξ, Xξ = − ω ( SX ) + τ ( X ) ξ. ✓ ✏ def ω : symmetric ⇐ ⇒ h : symmetric def ω : non-degenerate ⇐ ⇒ h : non-degenerate def { ω, ξ } : equiaffine ⇐ ⇒ τ = 0 ✒ ✑ Symmetry and non-degeneracy of ω are independent of ξ . ✓ ✏ Proposition 4.2 Image ( dω ) p ⊂ Image ω p ⇐ ⇒ h : symmetric Image ( dξ ) p ⊂ Image ω p ⇐ ⇒ τ = 0 ✒ ✑ ✓ ✏ Proposition 4.3 { ω, ξ } : non-degenerate, equiaffine = ⇒ ( M, ∇ , h ) is a quasi-statistical manifold. { ω, ξ } : symmetric, non-degenerate, equiaffine = ⇒ ( M, ∇ , h ) is a SMAT. ✒ ✑

  11. Geometry of Affine Distributions 11 SMAT with the SLD Fisher metric (Kurose 2007) Herm( d ) : the set of all Hermitian matrices of degree d . S : a space of quantum states S = { P ∈ Herm( d ) | P > 0 , trace P = 1 } T P S ∼ = A 0 A 0 = { X ∈ Herm( d ) | trace X = 0 } We denote by � X the corresponding vector field of X . ✓ ✏ For P ∈ S , X ∈ A 0 , define ω P ( � X ) ( ∈ Herm( d )) and ξ by X = 1 2( P ω P ( � X ) + ω P ( � X ) P ) , ξ = − I d Then { ω, ξ } is an equiaffine distribution. ✒ ✑ The induced quantities are given by ( ) Y ) = 1 h P ( � X, � P ( ω P ( � X ) ω P ( � Y ) + ω P ( � Y ) ω P ( � 2trace X )) , ( ) Y ) P − 1 X � p = h P ( � X, � 2( Xω P ( � Y ) + ω P ( � ∇ � Y ) X ) . Y ( R = R ∗ = 0 , T ∗ = 0 , but T ̸ = 0)

  12. Geometry of Affine Distributions 12 4.2 Triviality of quasi-statistical manifolds ( M, ∇ , h ): a quasi-statistical manifold ∇ is of (weak) constant curvature def ⇐ ⇒ There exists a positive function k such that R ∇ ( X, Y ) Z = k { h ( Y, Z ) X − h ( X, Z ) Y } Theorem 1 { ω, ξ } : a non-degenerate, equiaffine distribution. ( M, ∇ , h ) : the induced quasi-statistical manifold of { ω, ξ } , ∇ : weak constant curvature h k ( X, Y ) := kh ( X, Y ) , ∇ k X Y := ∇ X Y + d (log k )( X ) Y ⇒ ( M, ∇ k , h k ) is a statistical manifold of constant curvature 1 . = This theorem implies that a constant curvature quasi-statistical man- ifold is easily obtained from a standard statistical manifold. On the other hand, in the case R = 0, (i.e., ( M, ∇ , h ) is a space of distant parallelism), we can define non-trivial quasi-statistical mani- folds.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend