quasi shuffles hoffman s exponential and applications to
play

Quasi-shuffles, Hoffmans exponential and applications to SDEs - PowerPoint PPT Presentation

Quasi-shuffles, Hoffmans exponential and applications to SDEs Kurusch EbrahimiFard, Simon J.A. Malham , Frederic Patras and Anke Wiese ACPMS Seminar 29th May 2020 14:30 KEF, Malham, Patras Wiese Quasi-shuffles: Hoffmans exponential


  1. Quasi-shuffles, Hoffman’s exponential and applications to SDEs Kurusch Ebrahimi–Fard, Simon J.A. Malham , Frederic Patras and Anke Wiese ACPMS Seminar 29th May 2020 14:30 KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  2. Outline 1 Motivation. 2 Quasi-shuffle algebra. 3 Hoffman’s exponential map. 4 Application to exponential Lie series. KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  3. Motivation: SDEs o stochastic differential system for Y t P R N : Itˆ ż t d ÿ V i p Y τ q d X i Y t “ Y 0 ` τ , 0 i “ 1 X i t driving scalar continuous semimartingales. Quadratic covariations: r X i , X j s “ 0 for all i ‰ j . V i governing non-commuting vector fields. Goal: compute the logarithm of the flowmap; Lie series? KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  4. Itˆ o chain rule and flowmap The Itˆ o chain rule ù ñ ż t d ÿ f p Y τ q d X i ` ˘ f p Y t q “ f p Y 0 q ` V i ¨ B τ 0 i “ 1 ż t d ÿ ` 1 V i b V i : B 2 ˘ f p Y τ q d r X i , X i s τ , ` 2 0 i “ 1 Use p V i ¨ Bq f p Y q or V i ˝ f ˝ Y . Flowmap: ϕ t : f ˝ Y 0 ÞÑ f ˝ Y t . Solution: Y t “ ϕ t ˝ id ˝ Y 0 . KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  5. Driving processes: extend For i “ 1 , . . . , d set D i : “ V i ¨ B and X r i , i s : “ r X i , X i s , 2 V i b V i : B 2 . D r i , i s : “ 1 ż t ÿ D a ˝ f ˝ Y τ d X a ñ f ˝ Y t “ f ˝ Y 0 ` τ , 0 a P A A : “ t 1 , . . . , d , r 1 , 1 s , . . . , r d , d su . KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  6. Flowmap Iterating chain rule ù ñ ÿ ÿ ϕ t “ I w p t q D w Ñ w b w . w P A ˚ For word w “ a 1 ¨ ¨ ¨ a n P A ˚ : D w : “ D a 1 ˝ ¨ ¨ ¨ ˝ D a n ż d X a 1 τ 1 ¨ ¨ ¨ d X a n I w : “ τ n . 0 ď τ 1 﨨¨ď τ n ď t KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  7. Algebra: structures Assume: D commutative & associative prod. r ¨ , ¨ s on KA . Definition (Bilinear form) x ¨ , ¨ y : K x A y b K x A y Ñ K for any u , v P A ˚ : # 1 , if u “ v , x u , v y : “ 0 , if u ‰ v . For this scalar product, A ˚ forms an orthonormal basis. KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  8. Quasi-shuffle product K x A y Ñ concatenation algebra: uv P K x A y . Definition (Quasi-Shuffle product) ˚ generated recursively, u ˚ 1 “ 1 ˚ u “ u , where ‘1’ “ empty word: ua ˚ vb “ p u ˚ vb q a ` p ua ˚ v q b ` p u ˚ v q r a , b s . K x A y ˚ commutative and associative algebra (Hoffman). r ¨ , ¨ s ” 0 Ñ shuffle algebra K x A y . D KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  9. Examples Example The quasi-shuffle of 12 and 34 is: 12 ˚ 34 “ 1234 ` 3412 ` 1342 ` 3142 ` 1324 ` 3124 ` 1 r 2 , 3 s 4 ` r 1 , 3 s 42 ` 3 r 1 , 4 s 2 ` r 1 , 3 s 24 ` 13 r 2 , 4 s ` 31 r 2 , 4 s ` r 1 , 3 sr 2 , 4 s . KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  10. Co-products Definition (Deconcatenation and de-quasi-shuffle coproducts) Deconcatenation coproduct ∆: K x A y Ñ K x A y b K x A y : ÿ ∆ p w q : “ x uv , w y u b v . u , v Also D de-quasi-shuffle coproduct ∆ 1 (finiteness cond.). ù ñ K x A y ¨ , ∆ 1 and K x A y ˚ , ∆ are Hopf algebras. KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  11. Convolution products End p K x A y ˚ q the K -module of linear endomorphisms of K x A y ˚ . Definition (Convolution products) X , Y P End p K x A y ˚ q , quasi-shuffle convolution prod.: X ˚ Y : “ quas ˝ p X b Y q ˝ ∆ . ÿ ` ˘ X ˚ Y p w q “ X p u q ˚ Y p v q . uv “ w Same notation: quasi-shuffle conv. prod. Ø underlying prod. Concatenation conv. prod.: conc ˝ p X b Y q ˝ ∆ 1 . KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  12. Tensor Hopf algebra Associative Hopf algebra (Reutenauer). K x A y ˚ b K x A y . p u b v qp u 1 b v 1 q “ p u ˚ u 1 q b p vv 1 q . Natural abstract setting for the flowmap. KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  13. Endomorphism characterisation X P End p K x A y ˚ q comp. described by image in K x A y ˚ b K x A y : ÿ X ÞÑ X p w q b w , w P A ˚ ÿ eg . id ÞÑ w b w . w P A ˚ KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  14. Logarithm endomorphism ¸ k ˜ ÿ ¸ ˜ ÿ ÿ log w b w “ c k w b w ´ 1 b 1 w P A ˚ w P A ˚ k ě 1 ¸ k ˜ ÿ ÿ “ c k w b w w P A ˚ zt 1 u k ě 1 ÿ ÿ “ c k p u 1 ˚ ¨ ¨ ¨ ˚ u k q b p u 1 ¨ ¨ ¨ u k q k ě 1 u 1 ,..., u k P A ˚ zt 1 u ˜ | w | ¸ ÿ ÿ ÿ “ u 1 ˚ ¨ ¨ ¨ ˚ u k b w c k w P A ˚ u 1 ¨¨¨ u k “ w k “ 1 ˜ ÿ ¸ ÿ c k J ˚ k “ ˝ w b w . w P A ˚ k ě 1 J ˚ k p w q is zero if | w | ă k . KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  15. Logarithm convolution power series Lemma (Logarithm convolution power series) The logarithm of ř w w b w is given by ˜ ÿ ¸ ÿ log ˚ p id q ˝ w b w , log w b w “ w P A ˚ w P A ˚ where p´ 1 q k ´ 1 log ˚ p id q : “ ÿ J ˚ k . k k ě 1 Often abbreviate log ˚ p id q ˝ w to log ˚ p w q . KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  16. Adjoint endomorphisms Embedding End p K x A yq Ñ K x A y ˚ b K x A y given by ÿ Y ÞÑ w b Y p w q , w P A ˚ an algebra homomorphism for concatenation conv. prod. Definition (Adjoint endomorphisms) X and Y adjoints if images match: ÿ ÿ X ÞÑ w b X p w q and Y ÞÑ Y p w q b w . w w X : p u q , v @ D @ D Reutenaeur ù ñ equiv to “ u , X p v q . KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  17. Composition action on words � ( For ℓ ď n : C p n q : “ λ “ p λ 1 , . . . , λ ℓ q : λ 1 ` ¨ ¨ ¨ ` λ ℓ “ n . Set | λ | : “ ℓ and Σ p λ q : “ λ 1 ` ¨ ¨ ¨ ` λ ℓ , Π p λ q : “ λ 1 ¨ ¨ ¨ λ ℓ and Γ p λ q : “ λ 1 ! ¨ ¨ ¨ λ ℓ ! . Definition (Composition action) Given word w “ a 1 ¨ ¨ ¨ a n and λ “ p λ 1 , . . . , λ ℓ q P C p n q : action: λ ˝ w : “ r a 1 ¨ ¨ ¨ a λ 1 sr a λ 1 ` 1 ¨ ¨ ¨ a λ 1 ` λ 2 s ¨ ¨ ¨ r a λ 1 `¨¨¨` λ ℓ ´ 1 ` 1 ¨ ¨ ¨ a n s , Brackets are concatenated; r w s is the nested bracket above. KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  18. Hoffman exponential Definition (Hoffman exponential) exp H : K x A y Ñ K x A y ˚ defined by (‘1’ unchanged): D 1 ÿ exp H p w q : “ Γ p λ q λ ˝ w . λ P C p| w |q Inverse log H : K x A y ˚ Ñ K x A y given by D p´ 1 q Σ p λ q´| λ | ÿ log H p w q : “ λ ˝ w . Π p λ q λ P C p| w |q Hoffman ù ñ exp H : K x A y , ∆ Ñ K x A y ˚ , ∆ isomorphism. D Example exp H p a 1 a 2 a 3 q “ a 1 a 2 a 3 ` 1 2 r a 1 , a 2 s a 3 ` 1 2 a 1 r a 2 , a 3 s ` 1 6 r a 1 , a 2 , a 3 s . KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  19. Hoffman adjoints exp : H : K x A y conc , ∆ 1 Ñ K x A y conc ,δ isomorphism, for a P A : 1 exp : ÿ ÿ H p a q : “ n ! a 1 . . . a n , n ě 1 r a 1 ,..., a n s“ a ( δ “ deshuffle coprod.). log : H : K x A y conc ,δ Ñ K x A y conc , ∆ 1 given by: p´ 1 q n ´ 1 log : ÿ ÿ H p a q : “ a 1 . . . a n . n n ě 1 r a 1 ,..., a n s“ a K x A y , ∆ and K x A y conc ,δ duals; K x A y ˚ , ∆ and K x A y conc , ∆ 1 also. D KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  20. Recap Diagram KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  21. Word to integral/partial differential operator maps Orthog. conts semimartingales: r ¨ , ¨ s nilpotent of deg. 3. ÿ ÿ I w D w P I b D Ý Ñ w b w P K x A y ˚ b K x A y . w w P A Definition (Itˆ o word-to-integral and PDO maps) µ : K x A y ˚ Ñ I : µ : w ÞÑ I w , µ p u ˚ v q “ µ p u q µ p v q ¯ µ : K x A y Ñ D : µ : i ÞÑ D i , ¯ µ p uv q “ ¯ ¯ µ p u q ¯ µ p v q . KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  22. Abstract flowmap µ b ¯ µ : K x A y ˚ b K x A y Ñ I b D also a homomorphism, and: ˆÿ ˙ ÿ I w b D w “ p µ b ¯ µ q ˝ w b w . w w Compute a logarithm of ř w w b w . In terms of Lie polynomials/brackets of vector fields? KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  23. Fisk–Stratonovich integral Definition (Fisk–Stratonovich integral) Continuous semimartingales H and Z , FS integral defined as ż t ż t H τ o d Z τ : “ H τ d Z τ ` 1 2 r H , Z s t . 0 0 Lemma (Itˆ o to Fisk–Stratonovich conversion) ż t ż t f p Y τ q o d X i ` ˘ f p Y τ q d X i ` ˘ τ ´ 1 “` ˘ f p Y q , X i ‰ V i ¨ B τ “ V i ¨ B V i ¨ B t , 2 0 0 ż t “` ˘ f p Y q , X i ‰ ` ˘` ˘ f p Y τ q d r X i , X i s τ . V i ¨ B t “ V i ¨ B V i ¨ B 0 Proof. Definition ‘ Itˆ o chain rule. KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

  24. FS chain rule Corollary (Fisk–Stratonovich chain rule) “ p V i b V i q : B 2 ` p V i ¨ B V i q ¨ B ` ˘` ˘ V i ¨ B V i ¨ B ż t d ÿ ` ˘ f p Y τ q o d X i ù ñ f p Y q “ f p Y 0 q ` V i ¨ B τ 0 i “ 1 ż t d ÿ ´ 1 f p Y τ q d r X i , X i s τ . ` ˘ p V i ¨ B V i q ¨ B 2 0 i “ 1 Set V r i , i s : “ ´ 1 ` V i ¨ B V i q ¨ B . Chain rule ù ñ FS flowmap: 2 ÿ J w V w . w P A V w are compositions of vector fields. KEF, Malham, Patras Wiese Quasi-shuffles: Hoffman’s exponential

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend