quantum internet some research challenges
play

Quantum Internet: Some Research Challenges Don Towsley - PowerPoint PPT Presentation

Quantum Internet: Some Research Challenges Don Towsley UMass-Amherst Collaborators: S. Guha (Arizona), H. Krovi, P. Basu (Raytheon-BBN), D. Englund, M. Pant (MIT), L. Tassiulas (Yale), G. Vardoyan (UMass(, P. Nain (INRIA) Why Quantum


  1. Quantum Internet: Some Research Challenges Don Towsley UMass-Amherst Collaborators: S. Guha (Arizona), H. Krovi, P. Basu (Raytheon-BBN), D. Englund, M. Pant (MIT), L. Tassiulas (Yale), G. Vardoyan (UMass(, P. Nain (INRIA)

  2. Why Quantum Interet? Source: Physics World  cryptography, security – quantum key distribution (QKD)  (distributed) quantum computing – Shor’s algorithm, …  high resolution sensing Source: IQOQI, H. Ritsch  high-precision clock synchronization Source: MIT Technology Source: nature.com

  3. Outline  quantum 101  challenges  routing  quantum swithing

  4. Elementary quantum 101  bit has only two values: 0,1  physically represented by two state device

  5. Quantum bits  qubit - two-state quantum-mechanical system  example: photon polarization Horizontally polarized Vertically polarized |𝑦⟩ � 1 |𝑧⟩ � 0 0 1

  6. Superposition of states 𝛽 � � 𝛾 � � 1 𝜚⟩ � 𝛽 𝑦⟩ � 𝛾|𝑧⟩,

  7. Measurement  uncountable number of states  single photon: either 𝑌 or 𝑍 goes off, not both  repeat many times: 𝑄�𝑦� � 𝛽 � , 𝑄�𝑧� � 𝛾 �

  8. Two qubits  four basis states, 00⟩, 01⟩, |10⟩, |11⟩ � � 1 𝜔⟩ � 𝛽 �� 00⟩ � 𝛽 �� 01⟩ � 𝛽 �� 10⟩ � 𝛽 �� |11⟩, � 𝛽 ��  Bell state (Einstein-Podolsky-Rosen(EPR) pair) |00⟩ � |11⟩ 2

  9. Two qubit states  Bell state (EPR pair) |00⟩ � |11⟩ 2  measuring first qubit yields 0,1  if 1, measuring second qubit yields 1  if 0, measuring second qubit yields 0  can generate shared randomness across distances  other powerful entanglements  basis of quantum computing, quantum key distribution

  10. Long distance entanglement | |𝜔 � 𝜔 � ⟩ Alice Bob 𝑀

  11. Long distance entanglement |𝜔 � ⟩ |𝜔 � ⟩ Alice Bob 𝑀 ���� � 𝑓 ��� in fiber 𝑄 𝑄 ���� decays exponentially fast in distance

  12. Quantum Repeater  quantum memories to store qubits  generate link Bell states (entanglements)  propagate entanglements  destructive Bell state measurement  note: repeater does not know superposition state

  13. Transmitting Quantum Information Suppose Alice wants to send qubit to Bob Alice Bob End-to-end entanglements + Teleportation * * Quantum teleportation consumes a resource: an entanglement .

  14. Entanglement Creation link-level entanglements Alice Bob qubit to be transmitted measurement Alice Bob Alice Bob end-to-end entanglement

  15. Teleportation Alice Bob Alice Bob ? (1,0) Alice Bob

  16. Quantum Networks metro: ≲ 100 km long-haul: 1000s of km Alice Bill Bob trunk line

  17. Many Challenges Quantum switch  devices  memories • decoherence  photon detectors  transducers  quantum switch  putting pieces together  quantum network

  18. Networking Challenges  evaluating capacity region  resource allocation  stateless vs stateful control  static routing vs opportunistic routing

  19. A quantum switch QM  entanglement sources  quantum memory  fault-tolerant quantum logic, e.g., quantum measurements (QMs), …  classical computing and communications

  20. State information, path diversity  grid network  single mode per link  one memory per repeater per link per mode  one pair of end-to-end communicating nodes Pant, etal. NPJ Quantum Information (2019)

  21. Grid network Bob Alice 𝑞

  22. Grid network - phase 1 Bob Alice

  23. Grid network - phase 2 Bob Alice 𝑟

  24. Rate dependence on  greedy shortest path algorithm 𝑆 𝑕 �𝑞 � 0.55, 𝑟 � 1�  find shortest path 0.5  next shortest path log 10 (Rate(ebits/cycle)) 0  …  requires global information -0.5  𝑆 � �𝑞, 𝑟� – entanglement rate -1 Note: when 𝑟 � 1 , 2-D grid 𝑆 𝑕 �0.45, 1� percolates at 𝑞 � 0.5 -1.5 10 0 5 5 10 0 Y X

  25. Value of global state information  𝑆 �� �𝑞, 𝑟� – upperbound 𝑆 �� �0.6,1� 1  𝑟 � 1 , max flow  achievable with global 0.5 log 10 (Rate(ebits/cycle)) 𝑆 � �0.6,1� information  𝑟 � 1 , 4 � 𝑆 � 0 𝑆 �� �0.6,0.9� -0.5 𝑆 � �0.6,0.9� -1 -1.5 0 10 5 5 10 0 X Y

  26. Routing entanglement flows with local state information 𝑒 � , 𝑒 � Euclidean distance 𝑒 𝐵 � 2.8 from Alice, Bob 𝑒 𝐶 � 3 Bob 𝑒 𝐵 � 1.4 𝑒 𝐵 � 3.2 𝑒 𝐶 � 4.1 𝑒 𝐶 � 2.2 u 𝑞 v w Alice 𝑒 𝐵 � 2 𝑒 𝐶 � 3.6

  27. Routing entanglement flows with local state information 𝑒 𝐵 � 2.8 𝑒 𝐶 � 3 Bob 𝑒 𝐵 � 1.4 𝑒 𝐵 � 3.2 𝑒 𝐶 � 4.1 𝑒 𝐶 � 2.2 u v w Alice 𝑒 𝐵 � 2 𝑒 𝐶 � 3.6

  28. Routing entanglement flows with local state information 𝑒 𝐵 � 2.8 𝑒 𝐶 � 3 w Bob 𝑒 𝐵 � 1.4 𝑒 𝐵 � 3.2 𝑒 𝐶 � 4.1 𝑒 𝐶 � 2.2 u v w v Alice 𝑒 𝐵 � 2 𝑒 𝐶 � 3.6

  29. Routing entanglement flows with local state information 𝑒 𝐵 � 2.8 𝑒 𝐶 � 3 Bob 𝑒 𝐵 � 1.4 𝑒 𝐵 � 3.2 𝑒 𝐶 � 4.1 𝑒 𝐶 � 2.2 u v w connect potential shortest path v 𝑒 𝐵 � 2 Alice 𝑒 𝐶 � 3.6

  30. Routing entanglement flows with local state information 𝑒 𝐵 � 2.8 𝑒 𝐶 � 4 Bob 𝑒 𝐵 � 1.4 𝑒 𝐵 � 3.2 𝑒 𝐶 � 4.1 𝑒 𝐶 � 2.2 u v w connect potential shortest path + any other Alice 𝑒 𝐵 � 2 𝑒 𝐶 � 3.6

  31. Local information and diversity  𝑆 ��� �𝑞, 𝑟� – rate using local rule to set up most likely paths 1  𝑆 ��� 𝑞, 𝑟 - rate over single path 𝑆 𝑕 �0.6, 0.9� 0 log 10 (Rate(ebits/cycle)) between end points -1  no diversity 𝑆 𝑚𝑝𝑑 �0.6, 0.9� -2 -3 𝑆 𝑚𝑗𝑜 �0.6, 0.9� -4 -5 -6 0 10 5 5 10 0 X Y

  32. Multi-flow routing 0.6 0.6 Local Rule Local Rule multi-flow spatial . . . based on Flow 2 based on Flow 1 0.5 0.5 division Alice 1 Alice 2 0.4 0.4 multi-flow time-share 0.3 𝑆 2 R 2 0.3 . . . . . . single-flow 0.2 0.2 time-share 0.1 0.1 Bob 2 Bob 1 . . . 0 0 0 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 R 1 𝑆 1

  33. Multi-flow routing 0.6 0.6 multi-flow spatial . . . 0.5 division 0.5 Alice 1 multi-flow 0.4 0.4 𝜄 time-share 0.3 𝑆 2 R 2 0.3 . . . . . . single-flow Bob 2 Alice 2 0.2 0.2 time-share 0.1 0.1 Bob1 0 . . . 0 0 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 R 1 𝑆 1

  34. What if switches have “many” good quality quantum memories?

  35. Quantum switch  any two users want to share an entanglement  link Bell states generated according to Poisson process, 𝜈 � , link 𝐽  switch can store 𝐶 qubits  Bell state measurement success probability 𝑟  switch follows Oldest Link Entanglement First (OLEF) rule Vardoyan, etal. arXiv:1903.04420 (2019)

  36. Model  simple birth-death process, �  switch capacity,  expected number stored qubits

  37. Buffer size, capacity  impact of buffer size on entanglement capacity  small memory requirement 37

  38. Buffer size and Buffer usage low  𝐹�𝑅� � 1 for practical configurations

  39. Link heterogeneity  continuous time Markov chain can be used to obtain stability conditions, expressions for � � � - one stored qubit at link

  40. Example , : capacity  one link nearly twice as fast as other two links  mismatch causes storage of entanglements for that link

  41. Decoherence: Decoherence model:  qubit good or bad – rate qubit goes from  good to bad  decoherence has little effect when

  42. Other extensions  tripartite entanglement switching  can switch serving both bi- and tripartite entanglements do better than TDM? Yes, but advantage diminishes as number of links grows

  43. Bi- and Tripartite Switching: Comparison 3 links Vardoyan, etal. Qcrypt 2019 (arXiv:1901.06786)

  44. Research questions  maximum network capacity?  routing algorithms?  static vs. dynamic vs. opportunistic  value of state vs. cost of state  scheduling algorithms?  dealing with noise?  accurate (de)coherence models?  two way (entanglement producing) vs. one way (qubit pushing)

  45. Other Quantum Networking Challenges  data, control plane design  combination classical/quantum – same/separate networks?  SDN?  Q-TCP  measurement, management

  46. Quantum initiatives China:  China’s Quantum Experiments at Space Scale (Micius)  National Laboratory for Quantum Information Science (Hefei)  76 billion Yuan Europe:  Quantum Technology Flagship  one billion euros  2017-2027 USA: National Quantum Initiative Act  1.25 billion dolllars  2019-2029

  47. Thanks!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend