quantum comets
play

Quantum comets Dima Shepelyansky www.quantware.ups-tlse.fr/chirikov - PowerPoint PPT Presentation

Quantum comets Dima Shepelyansky www.quantware.ups-tlse.fr/chirikov (1969-79) Chirikov standard map: p = p + K sin x , x = x + p (K=1.1) (1979) Quantum map (kicked rotator): p 2 / 2 e iK / cos = e i x


  1. Quantum comets Dima Shepelyansky www.quantware.ups-tlse.fr/chirikov (1969-79) Chirikov standard map: p = p + K sin x , ¯ ¯ x = x + ¯ p (K=1.1) (1979) Quantum map (kicked rotator): p 2 / 2 � e − iK / � cos ˆ ¯ ψ = e − i ˆ x ψ (Chirikov group 1981-1987): Anderson or dynamical localization (1974) Microwave ionization of hydrogen/Rydberg atoms (Bayfield-Koch experiment, Yale), quantum localization of chaos: theory (1983-1990), experiment Koch, Bayfield, Walther (1988-91) (1986-90) Kepler map, Halley comet: Petrosky, Chirikov-Vecheslavov, DS, Shevchenko (2009-16) Dark matter capture: Khriplovich, DS, Lages, Rollin + Heggie (1975) (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 1 / 15

  2. Microwave ionization of hydrogen/Rydberg atoms Bayfield, Koch PRL (1974) - experiments at Yale: Hydrogen principle quantum number n 0 ≈ 66, microwave ω/ 2 π = 9 . 9 GHz , field amplitude ǫ ≈ 10 V / cm being smaller than static ionization border ǫ st ≈ 30 V / cm ; N I ≈ 76 photons are required for atom ionization Hamiltonian (in atomic units): H ( p , r ) = p 2 / 2 − 1 / | r | − ǫ r cos ω t Classical description/scaling : ω 0 = ω n 03 ≈ 0 . 43, ǫ 0 = ǫ n 04 ≈ 0 . 03 < 0 . 13 Right (1986): Ionization probability as a function of ω 0 (numerics: dashed - classical; full - quantum) History of the problem: DS Scholarpedia (2012) (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 2 / 15

  3. Kepler map variation of energy and phase on one orbital period Classical hydrogen atom in 1d (1983 - 1987) ¯ N = N + k sin φ φ = φ + 2 πω ( − 2 ω ¯ ¯ N ) − 3 / 2 N = − 1 / 2 ω n 2 = E / � ω is photon number, φ = ω t at perihelion; valid for distance at perihelion q = l 2 / 2 < ( 1 /ω ) 2 / 3 linearization of equation for phase near resonant values ¯ φ − φ = 2 π m gives ¯ φ = φ + T ¯ N ; T = 6 πω 2 n 05 Chirikov standard map with K = kT = ǫ 0 /ǫ c ; chaotic, diffisive ionization for ǫ 0 > ǫ c = 1 / ( 49 ω 01 / 3 ) ; diffusion rate D = k 2 / 2 “Kepler map” term coined in Phys. Rev. A 36 , 3501 (1987) (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 3 / 15

  4. Quantum Kepler map and photonic localization Classical hydrogen atom in 1d (1983 - 1987) Operator commutator [ ˆ N , ˆ φ ] = − i in ¯ N = N + k sin φ , φ = φ + 2 πω ( − 2 ω ¯ ¯ N ) − 3 / 2 ψ = e − i ˆ or ¯ H 0 ˆ Pe − ik cos ˆ φ ψ H 0 = 2 π [ − 2 ω ( N 0 + ˆ ˆ N φ )] − 1 / 2 , N 0 = − 1 / ( 2 ω n 02 ) = − N I , ˆ N φ = − i ∂/∂φ . quantum localization of diffusion (like Anderson localization (1958) in disordered solids) ℓ φ = D = k 2 / 2 = 3 . 33 ǫ 2 /ω 10 / 3 f N ∝ exp ( − 2 | N − N 0 | /ℓ φ ) Right: n 0 = 100, ǫ 0 = 0 . 04, ω 0 = 3 (open circles - 1d Schrodinger eq., black circles - the quantum Kepler map, straight line - theory) (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 4 / 15

  5. Delocalization transition ℓ φ > N I = 1 / ( 2 ω n 02 ) = n 0 / 2 ω 0 or / ( 6 . 6 n 0 ) 1 / 2 = 0 . 4 ω 1 / 6 ω 0 ǫ 0 > ǫ q = ω 7 / 6 0 Right: ionization threshold ǫ 0 vs ω 0 for Koch (1988) experiment at 36GHz (open circles), 45 ≤ n 0 ≤ 80, n I = 90; quantum Kepler map (full circles); dashed/dotted curve - quantum/classical Kepler map theory; interaction time 100 microwave periods (no fit parameters). Physica A 163 , 205 (1990) 1d Kepler map gives a good description of real ionization of 3d atom (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 5 / 15

  6. Kepler map for comets Petrosky Phys. Lett. A (1986) a planet on a 2d circular orbit (radius r p = 1, planet velocity v p = 1) around a star at mass ratio µ = m p / M , comet perihelion distance q ≫ r p Comet dynamics is described by the Kepler map w = w + F sin x , ¯ ¯ x = x + w − 3 / 2 w = v 2 is comet rescaled energy; x is planet phase divided by 2 π F ≈ 2 µ q − 1 / 4 exp ( − 0 . 94 q 3 / 2 ) F-kick function for Halley comet Petrosky (1986); Chirikov-Vecheslavov from Chirikov-Vecheslavov: (BINP 1986) - (A&A 1989) diffusive ionization in time kick function from 46 times at perehelion for t I ∼ T J ( 2 / F 2 ) ∼ 10 7 years Halley comet (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 6 / 15

  7. Chaotic Halley comet Chirikov-Vecheslavov (1986-1989) Comet dynamics is described by the Halley (modified Kepler) map x = x + w − 3 / 2 w = w + F ( x ) , ¯ ¯ Main contribution from Jupiter, Saturn Chaotic diffusion, average ionization time is approximately 10 7 years More about kick function: Rollin, Haag, Lages Phys. Let. A 379 , 1017 (2015) (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 7 / 15

  8. Chaotic autoionization of molecular Rydberg states Rydberg electron interaction with charged rotation core rotating dipole + Coulomb interaction (atomic units) H = ( p x 2 + p y 2 ) / 2 − 1 / r + d ( x cos ω t + y sin ω t ) / r 3 that is approximately H = ( p x 2 + p y 2 ) / 2 − [( x + d cos ω t ) 2 + ( y + d sin ω t ) 2 ] − 1 / 2 Exact Kramers-Henneberger transformation gives Hamiltonian of excited hydrogen atom in a circular polarized microwave field with effective ǫ = d ω 2 H = ( p x 2 + p y 2 ) / 2 − 1 / r − ω m + d ω 2 r cos ψ where ψ conjugated to momentum m is the polar angle between direction to electorn and field direction in the rotating frame. Conditions of applicability: d < a core < q = r min = l 2 / 2 < r ω = 1 /ω 2 / 3 ; r ω >> a core (core size) for ω ≪ 1 / a 3 / 2 core Phys. Rev. Lett. 72 , 1818 (1994) (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 8 / 15

  9. Kepler map for rotating dipole ¯ N = N + k sin φ , φ = φ + 2 πω ( − 2 ω ¯ ¯ N ) − 3 / 2 k ≈ 2 . 6 d ω 1 / 3 [ 1 + l 2 / 2 n 2 + 1 . 09 l ω 1 / 3 ] Chaotic diffusion, average ionization time is approximately t I ≈ N 2 I / D ≈ 2 / [( 2 n 0 ω 2 ) k 2 ] D = k 2 / 2 The map is approximate since the orbital momentum is only approximately concerved (e.g. Dvorak, Kribbel A&A 227 , 264 (1990)) (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 9 / 15

  10. Kepler map for rotating dipole The phase space ( En 2 0 , φ ) for the rotating dipole d / n 2 0 = 0 . 000625, ω n 3 0 = 4, l / n 0 = 0 . 3, (a) - continuous equations, (b) - the Kepler map, initial energy is marked by arrow (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 10 / 15

  11. Kepler map for rotating quadrupole (planet/asteroid) H = ( p x 2 + p y 2 ) / 2 − 0 . 5 [( x − d sin ω t ) 2 + ( y − d cos ω t )] − 1 / 2 − 0 . 5 [( x + d sin ω t ) 2 + ( y + d cos ω t )] − 1 / 2 w = w + A sin 2 φ , ¯ ¯ w − 3 / 2 φ = φ + 2 πω ¯ A ∼ d 2 ω 2 ∼ ∆ Q ω 2 core ∼ d 2 being quadrupole ( ∆ Q ∼ a 2 moment) Chaos border ∆ Q / R 2 > 1 / ( 50 ω 03 ) where ∆ Q is rotating part of the quadrupole of rigid body, ω 0 is the ration between the quadrupole rotaion frequency and the satellite frequency. q < r ω = 1 /ω 2 / 3 PRL 72 , 1818 (1994)) (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 11 / 15

  12. Capture of dark matter in the Solar system � � � v 2 dv v 2 54 − 3 Flow of dark matter particles (DMP): f ( v ) dv = u 3 exp ; u 2 π 2 ρ g ≈ 4 · 10 − 25 g / cm 3 , u ≈ 220 km / s Dimension argument: √ √ G 2 m p M G 2 m p M ∆ m p = ρ g T d < σ v > ; < σ v > ∼ 54 π ; ∆ m p ∼ ρ g T d 54 π u 3 u 3 For T d ≈ 4 . 5 · 10 9 years one gets ∆ m p ∼ 10 21 g for Jupiter, density 6 · 10 − 22 g / cm 3 assuming r p volume. But in reality T d ∼ 10 7 years is given by diffusion escape time as for Halley comet. From the Kepler map only DMP with | w | < F ≈ 5 m p v p 2 / M are captured with q < r p . On infinity q = ( vr d ) 2 / 2 GM and q ∼ r p gives cross-section: d ∼ 2 π GMr p / v 2 ∼ 2 π r 2 p ( v p / v ) 2 ∼ 2 π r 2 σ ∼ π r 2 p M / ( 5 m p ) ≫ π r 2 p (also Heggie MNRAS (1975)) Typical capture/escape velocity v 2 ∼ 5 m p v p 2 / M ; for Sun-Jupiter v ∼ 1 km / s in agreement with numerics of A.Peter PRD (2009) Khriplovich, DS Int. J. Mod. Phys. D (2009) (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 12 / 15

  13. Captured mass of dark matter in the Solar system Capture process continues during time T d ≈ 10 7 years for Sun-Jupiter (Chirikov-Vecheslavov): √ G 2 m p M ∆ m p ∼ ρ g T d 54 π u 3 T d ∼ 1 / D ∼ ( M / m p ) 2 ∆ m p ∼ ρ g G 2 M 3 / m p u 3 ∼ 10 − 14 M DMP density in vicinity of Earth-Jupiter: ρ EJ ∼ 5 · 10 − 29 g / cm 3 ≪ ρ g ≈ 4 · 10 − 25 g / cm 3 BUT ρ EJ ≫ ρ gH ≈ 1 . 4 · 10 − 32 g / cm 3 (4000 times enhancement at u / v p = 17 for galactic density in one kick range 0 < | w | < w H = F ) Global density enhancement is also possible at u / v p < 1. => SEE TALK of José Lages Lages, DS MNRAS Lett (2013) (Quantware group, CNRS, Toulouse) Ecole de Luchon W4 19 Sept (2016) 13 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend