quantum cluster algebras from geometry
play

Quantum cluster algebras from geometry Marta Mazzocco Based on - PowerPoint PPT Presentation

Cluster algebras Teichm uller Theory Geodesic lengths Quatisation Decorated character variety Quantum cluster algebras from geometry Marta Mazzocco Based on Chekhov-M.M. arXiv:1509.07044 and Chekhov-M.M.-Rubtsov arXiv:1511.03851 Marta


  1. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Quantum cluster algebras from geometry Marta Mazzocco Based on Chekhov-M.M. arXiv:1509.07044 and Chekhov-M.M.-Rubtsov arXiv:1511.03851 Marta Mazzocco Quantum cluster algebras from geometry

  2. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Ptolemy Relation aa ′ + bb ′ = cc ′ a c ′ c b ′ b a ′ Marta Mazzocco Quantum cluster algebras from geometry

  3. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Ptolemy Relation ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) → ( x ′ 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) x 1 x ′ 1 = x 9 x 7 + x 8 x 2 • x 9 x ′ • x 1 1 x 8 • x 2 x 4 x 7 • x 3 x 5 • • x 6 Marta Mazzocco Quantum cluster algebras from geometry

  4. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Ptolemy Relation ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) → ( x ′ 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) x 1 x ′ 1 = x 9 x 7 + x 8 x 2 • x 9 x ′ • x 1 1 x 8 • x 2 x 4 x 7 • x 3 x 5 • • x 6 Marta Mazzocco Quantum cluster algebras from geometry

  5. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Ptolemy Relation ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) → ( x ′ 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) x 1 x ′ 1 = x 9 x 7 + x 8 x 2 • x 9 x ′ • x 1 1 x 8 • x 2 x 4 x 7 • x 3 x 5 • • x 6 Marta Mazzocco Quantum cluster algebras from geometry

  6. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Ptolemy Relation ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) → ( x ′ 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) x 1 x ′ 1 = x 9 x 7 + x 8 x 2 • x 9 x ′ • x 1 1 x 8 • x 2 x 4 x 7 • x 3 x 5 • • x 6 Marta Mazzocco Quantum cluster algebras from geometry

  7. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Ptolemy Relation ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) → ( x ′ 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) x 1 x ′ 1 = x 9 x 7 + x 8 x 2 • x 9 x ′ • 1 x 8 • x 2 x 4 x 7 • x 3 x 5 • • x 6 Marta Mazzocco Quantum cluster algebras from geometry

  8. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Ptolemy Relation ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) → ( x ′ 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) ( x ′ 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) → ( x ′ 1 , x 2 , x ′ 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) • x 9 x ′ • 1 x 8 • x 2 x 4 x 7 • x 3 x 5 • • x 6 Marta Mazzocco Quantum cluster algebras from geometry

  9. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Ptolemy Relation ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) → ( x ′ 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) ( x ′ 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) → ( x ′ 1 , x ′ 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) • x 9 x ′ • 1 x 8 • x ′ x 2 2 x 4 x 7 • x 3 x 5 • • x 6 Marta Mazzocco Quantum cluster algebras from geometry

  10. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Cluster algebra We call a set of n numbers ( x 1 , . . . , x n ) a cluster of rank n . A seed consists of a cluster and an exchange matrix B , i.e. a skew–symmetrisable matrix with integer entries. A mutation is a transformation n ), µ i : B → B ′ where µ i : ( x 1 , x 2 , . . . , x n ) → ( x ′ 1 , x ′ 2 , . . . , x ′ x b ij x − b ij x i x ′ ∏ ∏ x ′ i = + , j = x j ∀ j ̸ = i . j j j : b ij > 0 j : b ij < 0 Definition A cluster algebra of rank n is a set of all seeds ( x 1 , . . . , x n , B ) related to one another by sequences of mutations µ 1 , . . . , µ k . The cluster variables x 1 , . . . , x k are called exchangeable, while x k +1 , . . . , x n are called frozen. [Fomin-Zelevnsky 2002]. Marta Mazzocco Quantum cluster algebras from geometry

  11. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Example Cluster algebra of rank 9 with 3 exchangeable variables x 1 , x 2 , x 3 and 6 frozen ones x 4 , . . . , x 9 . ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) → ( x ′ 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) x 1 x ′ 1 = x 9 x 7 + x 8 x 2 • x 9 x ′ • x 1 1 x 8 • x 2 x 4 x 7 • x 3 x 5 • • x 6 Marta Mazzocco Quantum cluster algebras from geometry

  12. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Outline Are all cluster algebras of geometric origin? Introduce bordered cusps Geodesics length functions on a Riemann surface with bordered cusps form a cluster algebra. All Berenstein-Zelevinsky cluster algebras are geometric Marta Mazzocco Quantum cluster algebras from geometry

  13. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Teichm¨ uller space For Riemann surfaces with holes: Hom ( π 1 (Σ) , P SL 2 ( R )) / GL 2 ( R ) . Idea: Teichm¨ uller theory for a Riemann surfaces with holes is well understood. Take confluences of holes to obtain cusps. Develop bordered cusped Teichm¨ uller theory asymptotically. This will provide cluster algebra of geometric type Marta Mazzocco Quantum cluster algebras from geometry

  14. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Poincar´ e uniformsation Σ = H / ∆ , where ∆ is a Fuchsian group, i.e. a discrete sub-group of P SL 2 ( R ). Examples γ 2 γ 1 Marta Mazzocco Quantum cluster algebras from geometry

  15. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Poincar´ e uniformsation Σ = H / ∆ , where ∆ is a Fuchsian group, i.e. a discrete sub-group of P SL 2 ( R ). Examples γ 2 γ 1 Theorem Elements in π 1 (Σ g , s ) are in 1-1 correspondence with conjugacy classes of closed geodesics. Marta Mazzocco Quantum cluster algebras from geometry

  16. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Coordinates: geodesic lengths Theorem The geodesic length functions form an algebra with multiplication: G γ G ˜ γ = G γ ˜ γ + G γ ˜ γ − 1 . ˜ γ γ Marta Mazzocco Quantum cluster algebras from geometry

  17. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Coordinates: geodesic lengths Theorem The geodesic length functions form an algebra with multiplication: G γ G ˜ γ = G γ ˜ γ + G γ ˜ γ − 1 . = ˜ γ γ Marta Mazzocco Quantum cluster algebras from geometry

  18. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Coordinates: geodesic lengths Theorem The geodesic length functions form an algebra with multiplication: G γ G ˜ γ = G γ ˜ γ + G γ ˜ γ − 1 . = + ˜ γ γ − 1 γ ˜ γ γ ˜ γ Marta Mazzocco Quantum cluster algebras from geometry

  19. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Poisson structure γ } = 1 γ − 1 { G γ , G ˜ γ − 1 . 2 G γ ˜ 2 G γ ˜ { } = 1 − 1 2 2 ˜ γ γ − 1 ˜ γ ˜ γ γ γ Marta Mazzocco Quantum cluster algebras from geometry

  20. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Two types of chewing-gum moves Connected result: Disconnected result: Marta Mazzocco Quantum cluster algebras from geometry

  21. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety Chewing gum 1 + ε 1 z 3 z 1 z 2 εℓ 1 εℓ 2 ) 2 ( = | z 1 − z 2 | 2 sinh d H ( z 1 , z 2 ) 2 4 ℑ z 1 ℑ z 2 l 1 l 2 ϵ 2 + ( l 1 + l 2 ) 2 e d H ( z 1 , z 2 ) ∼ 1 + O ( ϵ ), l 1 l 2 e d H ( z 1 , z 3 ) ∼ e d H ( z 1 , z 2 ) + 1 l 1 l 2 + O ( ϵ ). ⇒ Rescale all geodesic lengths by e ϵ and take the limit ϵ → 0. [Chekhov-M.M. arXiv:1509.07044] Marta Mazzocco Quantum cluster algebras from geometry

  22. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety = + + the rest skein γ a γ e γ f γ c γ b γ d ˜ γ a γ f = G ˜ γ c + G ˜ ˜ γ f ˜ γ e G ˜ γ e G ˜ γ a G ˜ γ b G ˜ γ d ˜ γ b ˜ γ d ˜ γ c Marta Mazzocco Quantum cluster algebras from geometry

  23. Cluster algebras Teichm¨ uller Theory Geodesic lengths Quatisation Decorated character variety = + + the rest skein γ a γ e γ f γ c γ b γ d ˜ γ a γ f = G ˜ γ c + G ˜ ˜ γ f ˜ γ e G ˜ γ e G ˜ γ a G ˜ γ b G ˜ γ d ˜ γ b ˜ γ d ˜ γ c Marta Mazzocco Quantum cluster algebras from geometry

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend