quantitative diagonalizability
play

Quantitative Diagonalizability Part I: Three Measures of - PowerPoint PPT Presentation

Quantitative Diagonalizability Part I: Three Measures of Nonnormality pseudospectrum || 1 || 1 pseudospectrum || 1


  1. Quantitative Diagonalizability Part I: Three Measures of Nonnormality

  2. πœ— βˆ’ pseudospectrum Ξ› πœ— 𝑁 ≔ 𝑨 ∈ β„‚ ∢ || 𝑨 βˆ’ 𝑁 βˆ’1 || β‰₯ πœ— βˆ’1

  3. πœ— βˆ’ pseudospectrum Ξ› πœ— 𝑁 ≔ 𝑨 ∈ β„‚ ∢ || 𝑨 βˆ’ 𝑁 βˆ’1 || β‰₯ πœ— βˆ’1 = {𝑨 ∈ β„‚ ∢ 𝜏 π‘œ 𝑨 βˆ’ 𝑁 ≀ πœ— } = {𝑨 ∈ β„‚: 𝑨 ∈ π‘‘π‘žπ‘“π‘‘ 𝐡 + 𝐹 , ||𝐹|| ≀ πœ—}

  4. πœ— βˆ’ pseudospectrum Ξ› πœ— 𝑁 ≔ 𝑨 ∈ β„‚ ∢ || 𝑨 βˆ’ 𝑁 βˆ’1 || β‰₯ πœ— βˆ’1 For normal matrices, Ξ› πœ— 𝑁 = Ξ› 0 𝑁 + 𝐸 0, πœ—

  5. Pseudospectrum of Toeplitz Example

  6. πœ— βˆ’ pseudospectrum Ξ› πœ— 𝑁 ≔ 𝑨 ∈ β„‚ ∢ || 𝑨 βˆ’ 𝑁 βˆ’1 || β‰₯ πœ— βˆ’1 e.g. discretization of pde from acoustics:

  7. πœ— βˆ’ pseudospectrum Ξ› πœ— 𝑁 ≔ 𝑨 ∈ β„‚ ∢ || 𝑨 βˆ’ 𝑁 βˆ’1 || β‰₯ πœ— βˆ’1 = {𝑨 ∈ β„‚ ∢ 𝜏 π‘œ 𝑨 βˆ’ 𝑁 ≀ πœ— } = 𝑨 ∈ β„‚: 𝑨 ∈ π‘‘π‘žπ‘“π‘‘ 𝐡 + 𝐹 , ||𝐹|| ≀ πœ— Ξ› πœ— 𝑁 βŠ‚ Ξ› 0 𝑁 + πœ† 𝑓 𝑁 𝐸 0, πœ— [Bauer-Fike]: For distinct eigs Ξ› πœ— 𝑁 = Ξ› 0 𝑁 +βˆͺ 𝑗 𝐸(πœ‡ 𝑗 , πœ† πœ‡ 𝑗 πœ—) + 𝑝(πœ—)

  8. Part II: Davies’ Conjecture (with Jess Banks, Archit Kulkarni, Satyaki Mukherjee)

  9. Diagonalization 𝐡 ∈ β„‚ π‘œΓ—π‘œ is diagonalizable if 𝐡 = π‘ŠπΈπ‘Š βˆ’1 for invertible π‘Š , diagonal 𝐸 . Every matrix is a limit of diagonalizable matrices. Let πœ† 𝑓 𝐡 ≔ ||π‘Š|| β‹… ||π‘Š βˆ’1 || be the eigenvector condition number of 𝐡 . πœ† 𝑓 β‰ͺ ∞ πœ† 𝑓 = ∞ Question: Given a matrix 𝐡 and πœ€ > 0 , what is min{πœ† 𝑓 𝐡 + 𝐹 : ||𝐹|| ≀ πœ€} ?

  10. Diagonalization 𝐡 ∈ β„‚ π‘œΓ—π‘œ is diagonalizable if 𝐡 = π‘ŠπΈπ‘Š βˆ’1 for invertible π‘Š , diagonal 𝐸 . Every matrix is a limit of diagonalizable matrices. Let πœ† 𝑓 𝐡 ≔ ||π‘Š|| β‹… ||π‘Š βˆ’1 || be the eigenvector condition number of 𝐡 . πœ† 𝑓 β‰ͺ ∞ πœ† 𝑓 𝐡 = 1 for normal, ∞ for nondiagonalizable πœ† 𝑓 = ∞ Question: Given a matrix 𝐡 and πœ€ > 0 , what is min{πœ† 𝑓 𝐡 + 𝐹 : ||𝐹|| ≀ πœ€} ?

  11. Diagonalization 𝐡 ∈ β„‚ π‘œΓ—π‘œ is diagonalizable if 𝐡 = π‘ŠπΈπ‘Š βˆ’1 for invertible π‘Š , diagonal 𝐸 . Every matrix is a limit of diagonalizable matrices. Let πœ† 𝑓 𝐡 ≔ ||π‘Š|| β‹… ||π‘Š βˆ’1 || be the eigenvector condition number of 𝐡 . πœ† 𝑓 β‰ͺ ∞ πœ† 𝑓 = ∞ Question: Given a matrix 𝐡 and πœ€ > 0 , what is min{πœ† 𝑓 𝐡 + 𝐹 : ||𝐹|| ≀ πœ€} ?

  12. Motivation: Computing Matrix Functions Problem. Compute 𝑔(𝐡) for analytic function 𝑔 , e.g. 𝑔 𝑨 = 𝑓 𝑨 , 𝑨 π‘ž . NaΓ―ve Approach . 𝑔 𝐡 = π‘Šπ‘” 𝐸 π‘Š βˆ’1 . Highly unstable if πœ† 𝑓 (𝐡) is big. e.g. π‘œ Γ— π‘œ Toeplitz: πœ† 𝑓 (𝐡 + 𝐹) π‘œ = 100 𝐹~ Gaussian πœ† 𝑓 𝐡 = 2 π‘œβˆ’1 β‰ˆ 10 30 βˆ₯ 𝐹 βˆ₯ Empirically: 𝐡 is close to a matrix with much better πœ† 𝑓 …

  13. Motivation: Computing Matrix Functions Problem. Compute 𝑔(𝐡) for analytic function 𝑔 , e.g. 𝑔 𝑨 = 𝑓 𝑨 , 𝑨 π‘ž . NaΓ―ve Approach . 𝑔 𝐡 = π‘Šπ‘” 𝐸 π‘Š βˆ’1 . Highly unstable if πœ† 𝑓 (𝐡) is big. e.g. π‘œ Γ— π‘œ Toeplitz: πœ† 𝑓 (𝐡 + 𝐹) π‘œ = 100 𝐹~ Gaussian πœ† 𝑓 𝐡 = 2 π‘œβˆ’1 β‰ˆ 10 30 βˆ₯ 𝐹 βˆ₯ Empirically: 𝐡 is close to a matrix with much better πœ† 𝑓 …

  14. Motivation: Computing Matrix Functions Problem. Compute 𝑔(𝐡) for analytic function 𝑔 , e.g. 𝑔 𝑨 = 𝑓 𝑨 , 𝑨 π‘ž . NaΓ―ve Approach . 𝑔 𝐡 = π‘Šπ‘” 𝐸 π‘Š βˆ’1 . Highly unstable if πœ† 𝑓 (𝐡) is big. e.g. π‘œ Γ— π‘œ Toeplitz, n=100: πœ† 𝑓 (𝐡 + 𝐹) π‘œ = 100 𝐹~ Gaussian πœ† 𝑓 𝐡 = 2 π‘œβˆ’1 β‰ˆ 10 30 βˆ₯ 𝐹 βˆ₯

  15. Motivation: Computing Matrix Functions Problem. Compute 𝑔(𝐡) for analytic function 𝑔 , e.g. 𝑔 𝑨 = 𝑓 𝑨 , 𝑨 π‘ž . NaΓ―ve Approach . 𝑔 𝐡 = π‘Šπ‘” 𝐸 π‘Š βˆ’1 . Highly unstable if πœ† 𝑓 (𝐡) is big. e.g. π‘œ Γ— π‘œ Toeplitz, n=100: πœ† 𝑓 (𝐡 + 𝐹) 𝐹~ Gaussian πœ† 𝑓 𝐡 = 2 π‘œβˆ’1 β‰ˆ 10 30 βˆ₯ 𝐹 βˆ₯ experiment by M. Embree Empirically: 𝐡 is close to a matrix with much better πœ† 𝑓 …

  16. Motivation: Computing Matrix Functions Problem. Compute 𝑔(𝐡) for analytic function 𝑔 , e.g. 𝑔 𝑨 = 𝑓 𝑨 , 𝑨 π‘ž . NaΓ―ve Approach . 𝑔 𝐡 = π‘Šπ‘” 𝐸 π‘Š βˆ’1 . Highly unstable if πœ† 𝑓 (𝐡) is big. e.g. π‘œ Γ— π‘œ Toeplitz, n=100: πœ† 𝑓 (𝐡 + 𝐹) 𝐹~ Gaussian πœ† 𝑓 𝐡 = 2 π‘œβˆ’1 β‰ˆ 10 30 βˆ₯ 𝐹 βˆ₯ Empirically : 𝐡 is close to a matrix with much better πœ† 𝑓 .

  17. Idea. Approximate 𝑔(𝐡) by 𝑔 𝐡 + 𝐹 for some small 𝐹 . e.g. 𝑔 𝐡 = 𝐡 πœ€ E = randn(n)*delta [V,D]=eig(A+E) πœ€ S = V*D.^(1/2)*inv(V)

  18. Idea. Approximate 𝑔(𝐡) by 𝑔 𝐡 + 𝐹 for some small 𝐹 . e.g. 𝑔 𝐡 = 𝐡 πœ€ E = randn(n)*delta [V,D]=eig(A+E) πœ€ S = V*D.^(1/2)*inv(V)

  19. Idea. Approximate 𝑔(𝐡) by 𝑔 𝐡 + 𝐹 for some small 𝐹 . e.g. 𝑔 𝐡 = 𝐡 πœ€ E = randn(n)*delta [V,D]=eig(A+E) πœ€ S = V*D.^(1/2)*inv(V) experiment by M. Embree

  20. Approximate Diagonalization Theorem. [Davies’06] For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that π‘œβˆ’1 π‘œ πœ† 𝑓 𝐡 + 𝐹 ≀ 𝐷 πœ€ Conjecture. For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that πœ† 𝑓 𝐡 + 𝐹 ≀ 𝐷 π‘œ πœ€ [Davies’06]: true for π‘œ = 3 and for special case 𝐡 = 𝐾 π‘œ , with 𝐷 π‘œ = 2 .

  21. Approximate Diagonalization Theorem. [Davies’06] For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that π‘œβˆ’1 π‘œ πœ† 𝑓 𝐡 + 𝐹 ≀ 𝐷 πœ€ Conjecture. For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that πœ† 𝑓 𝐡 + 𝐹 ≀ 𝐷 π‘œ πœ€ [Davies’06]: true for π‘œ = 3 and for special case 𝐡 = 𝐾 π‘œ , with 𝐷 π‘œ = 2 .

  22. Approximate Diagonalization Theorem. [Davies’06] For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that π‘œβˆ’1 π‘œ πœ† 𝑓 𝐡 + 𝐹 ≀ 𝐷 πœ€ Conjecture. For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that πœ† 𝑓 𝐡 + 𝐹 ≀ 𝐷 π‘œ πœ€ [Davies’06]: true for π‘œ = 3 and for special case 𝐡 = 𝐾 π‘œ , with 𝐷 π‘œ = 2 .

  23. Main Result Theorem A. For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that πœ† 𝑓 𝐡 + 𝐹 ≀ 4π‘œ 3/2 πœ€ Implies every matrix has a 1/π‘žπ‘π‘šπ‘§(π‘œ) perturbation with πœ† 𝑓 ≀ π‘žπ‘π‘šπ‘§(π‘œ) Implied by a stronger probabilistic result on condition number of eigenvalues.

  24. Main Result Theorem A. For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that πœ† 𝑓 𝐡 + 𝐹 ≀ 4π‘œ 3/2 πœ€ Implies every matrix has a 1/π‘žπ‘π‘šπ‘§(π‘œ) perturbation with πœ† 𝑓 ≀ π‘žπ‘π‘šπ‘§(π‘œ) Implied by a stronger probabilistic result on condition number of eigenvalues.

  25. Main Result Theorem A. For every 𝐡 ∈ β„‚ π‘œΓ—π‘œ with ||𝐡|| ≀ 1 and πœ€ ∈ (0,1) there is a perturbation 𝐹 such that πœ† 𝑓 𝐡 + 𝐹 ≀ 4π‘œ 3/2 πœ€ Implies every matrix has a 1/π‘žπ‘π‘šπ‘§(π‘œ) perturbation with πœ† 𝑓 ≀ π‘žπ‘π‘šπ‘§(π‘œ) Implied by a stronger probabilistic result on eigenvalue condition numbers.

  26. Probabilistic Analysis of πœ† 𝑗 Theorem B. Assume ||𝐡|| ≀ 1 and let 𝐻 have i.i.d. complex standard Gaussian entries. Let πœ‡ 1 , … πœ‡ π‘œ be the eigenvalues of 𝐡 + 𝛿𝐻 .

  27. Probabilistic Analysis of πœ† 𝑗 Theorem B. Assume ||𝐡|| ≀ 1 and let 𝐻 have i.i.d. complex standard Gaussian entries. Let πœ‡ 1 , … πœ‡ π‘œ be the eigenvalues of 𝐡 + 𝛿𝐻 . 1 𝑨 = 𝑦 + 𝑗𝑧 where 𝑦, 𝑧~𝑂 0, 2

  28. Probabilistic Analysis of πœ† 𝑗 Theorem B. Assume ||𝐡|| ≀ 1 and let 𝐻 have i.i.d. complex standard Gaussian entries. Let πœ‡ 1 , … πœ‡ π‘œ be the eigenvalues of 𝐡 + 𝛿𝐻 . Then for any open ball 𝐢 βŠ‚ β„‚ : πœ‡ 1 π‘œ πœ† 2 πœ‡ 𝑗 ≀ πœ‡ 3 𝔽 ෍ πœŒπ›Ώ 2 β‹… π‘€π‘π‘š(𝐢) πœ‡ 2 πœ‡ 4 πœ‡ 𝑗 ∈𝐢

  29. Probabilistic Analysis of πœ† 𝑗 Theorem B. Assume ||𝐡|| ≀ 1 and let 𝐻 have i.i.d. complex standard Gaussian entries. Let πœ‡ 1 , … πœ‡ π‘œ be the eigenvalues of 𝐡 + 𝛿𝐻 . Then for any open ball 𝐢 βŠ‚ β„‚ : πœ‡ 1 π‘œ πœ† 2 πœ‡ 𝑗 ≀ πœ‡ 3 𝔽 ෍ πœŒπ›Ώ 2 β‹… π‘€π‘π‘š(𝐢) πœ‡ 2 πœ‡ 4 πœ‡ 𝑗 ∈𝐢 cf. Precise asymptotic results for 𝐡 = 0 [Chalker- Mehlig’98,…Bourgade - Dubach’18,Fyodorov’18] and 𝐡 = Toeplitz [Davies- Hager’08,…Basak -Paquette- Zeitouni’14 -18, Sjostrand- Vogel’18]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend