quan fying the diffuse con nuum contribu on from blr gas
play

Quan%fying the diffuse con%nuum contribu%on from BLR gas: a - PowerPoint PPT Presentation

Quan%fying the diffuse con%nuum contribu%on from BLR gas: a modeling approach Mike Goad, Daniel Lawther, Kirk Korista, Otho Ulrich, Marianne Vestergaard Mike Goad Atlanta , USA 2017 Our approach: q Build a model BLR match the intensi:es (


  1. Quan%fying the diffuse con%nuum contribu%on from BLR gas: a modeling approach Mike Goad, Daniel Lawther, Kirk Korista, Otho Ulrich, Marianne Vestergaard Mike Goad Atlanta , USA 2017

  2. Our approach: q Build a model BLR match the intensi:es ( variability 9mescale/amplitude ) of strongest UV/op%cal emission lines in NGC 5548 (***For objects of interest, no such thing as a steady-state model***) q Compute wavelength-dependent (UV-op%cal-IR) flux and variability %mescale of DC arising from the same gas q Scale delays according to the frac%onal flux contribu%on DC/(INCIDENT + DC) q Drive with model con%nuum light-curves es%mate sta%s%cally likely delays (CCF/JAVELIN) + dependence on characteris9c %mescale & variability amplitude of driving con%nuum (MC approach) Mike Goad Atlanta 2017

  3. Types of model : q Pressure law model : Rees, Netzer and Ferland 1989, Goad, O’Brien, Gondhalekar 1993 Kaspi and Netzer 1999 Netzer 2000 q Local Op1mally emi4ng Clouds : Baldwin, Ferland, Korista, Verner 1995, Korista and Goad 2000, 2001, 2004. Mike Goad Atlanta 2017

  4. (1) Pressure Law models : Lawther, Goad, Korista, Ulrich, Vestergaard 2017, in prep Run of physical condi%ons with radius specified by simple radial pressure law const Temp U ( r ) ∝ r s − 2 n H ( r ) ∝ r − s P ( r ) ∝ r − s c ∝ r 2 s/ 3 A c ( r ) ∝ R 2 Assume mass conserva%on + spherical clouds N col ( r ) ∝ R c n H ∝ r − 2 s/ 3 Z r out ✏ ( r ) A c ( r ) n c ( r ) r 2 dr L = 4 ⇡ Line luminosity r in dC ( r ) ∝ A c ( r ) n c ( r ) dr ∝ r 2 s/ 3 − 3 / 2 dr Differen%al covering frac%on Mike Goad Atlanta 2017

  5. Normaliza%on condi%on : specify Φ H , n H , N col r at some + inner and outer radius, and total covering frac%on Ctot Choose line radia%on pagern – we assume clouds are spherical ✏ ( r, ✓ ) = ✏ totl [1 − (2 F ( r ) − 1) cos ✓ ] F ( r ) = ✏ inwd / ✏ totl Mike Goad Atlanta 2017

  6. 45 Mehdipour et al. 2015 log[ λ L λ / 1 erg s − 1 ] 44 43 42 41 40 − 2 0 2 4 6 log[Energy / 1Ryd] Two cases: s=0 , constant density nh, constant column density Nh + s=2 , constant ioniza%on parameter U Mike Goad Atlanta 2017

  7. Mike Goad Atlanta 2017

  8. R=1.48 lt-days R=14.8 lt-days R=148 lt-days 180 Ly - α 160 C IV emissivity-weighted radii 140 H α 120 H β can include effects of r � (lightdays) He II 4686 100 anisotropy/responsivity He II 1640 80 tends to increase 60 delays further 40 log( n col ) = 22 . 5 20 0 7 8 9 10 11 12 13 14 log( n H / 1cm − 3 ) Mike Goad Atlanta 2017

  9. Similarly – constant U models Ly - α 10 44 C IV H β He II 4686 Broad range in ioniza%on L line (erg s − 1 ) 10 43 for which we can exceed the measured line 10 42 luminosi%es 10 41 10 40 − 2 . 0 − 1 . 5 − 1 . 0 − 0 . 5 0 . 0 0 . 5 log (U) Mike Goad Atlanta 2017

  10. 10 44 Diffuse continuum Ionizing continuum Continuum ν L ν [erg s − 1 ] Total continuum 80 CCF Peak 70 CCF Centroid 10 43 60 50 Lag (days) 40 Model 1 ( s =0 , log( n H ) = 10 . 75 ) 10 42 30 2000 4000 6000 8000 10000 Wavelength [ ˚ A] 20 1 . 0 Di ff use continuum fraction , F di ff 10 Model 1 ( s =0 , log( n H ) = 10 . 75 ) 0 . 8 0 2000 4000 6000 8000 10000 0 . 6 Wavelength [ ˚ A] 0 . 4 0 . 2 CCF Peak × F di ff Model 1 14 0 . 0 CCF Centroid × F di ff 2000 4000 6000 8000 10000 12 Wavelength[ ˚ A ] Diluted lag (days) 10 80 r � 8 70 r η τ � (anisotropic) 60 Centroid [lightdays] 6 τ η (anisotropic) 50 4 40 30 2 Model 1 20 0 10 2000 4000 6000 8000 10000 Model 1 ( s =0 , log( n H ) = 10 . 75 ) 0 Wavelength [ ˚ A] 2000 4000 6000 8000 10000 Wavelength [ ˚ A] Mike Goad Atlanta 2017

  11. 10 44 Diffuse continuum Ionizing continuum 80 Continuum ν L ν [erg s − 1 ] Total continuum CCF Peak 70 CCF Centroid 60 10 43 50 Lag (days) 40 Model 2 ( s =2 , log( U ) = − 1 . 23 ) 30 10 42 2000 4000 6000 8000 10000 20 Wavelength [ ˚ A] 10 1 . 0 Model 2 ( s =2 , log( U ) = − 1 . 23 ) Di ff use continuum fraction , F di ff 0 2000 4000 6000 8000 10000 0 . 8 Wavelength [ ˚ A] 0 . 6 0 . 4 0 . 2 Model 2 ( s =2 , log( U ) = − 1 . 23 ) 14 CCF Peak × F di ff 0 . 0 CCF Centroid × F di ff 2000 4000 6000 8000 10000 Wavelength[ ˚ 12 A ] Diluted lag (days) 10 80 r � 70 8 r η τ � (anisotropic) 60 Centroid [lightdays] 6 τ η (anisotropic) 50 4 40 30 2 Model 2 ( s =2 , log( U ) = − 1 . 23 ) 20 0 10 2000 4000 6000 8000 10000 Model 2 ( s =2 , log( U ) = − 1 . 23 ) Wavelength [ ˚ A] 0 2000 4000 6000 8000 10000 Wavelength [ ˚ A] Mike Goad Atlanta 2017

  12. Anisotropy , F = � in ( λ ) / � tot ( λ ) 0 . 9 0 . 8 Inward frac%ons 0 . 7 0 . 6 Model 1 ( s =0 , log( n H ) = 10 . 75 ) 0 . 5 2000 4000 6000 8000 10000 Wavelength[ ˚ A ] 1 . 0 Anisotropy , F = � in ( λ ) / � tot ( λ ) 0 . 9 0 . 8 0 . 7 0 . 6 0 . 5 Model 2 ( s =2 , log( U ) = − 1 . 23 ) 0 . 4 2000 4000 6000 8000 10000 Wavelength[ ˚ A ] Mike Goad Atlanta 2017

  13. 60 14 50 τ CCF , cent × F di ff . log( n H ) = 8 τ CCF , cent . [days] 12 40 10 Density 8 30 6 20 dependence - 4 10 2 0 0 constant 60 14 50 τ CCF , cent × F di ff . log( n H ) = 9 τ CCF , cent . [days] density models 12 40 10 8 30 6 20 4 10 2 0 0 60 14 50 τ CCF , cent × F di ff . log( n H ) = 10 τ CCF , cent . [days] 12 40 10 8 30 6 20 4 10 2 0 0 60 14 50 τ CCF , cent × F di ff . log( n H ) = 11 τ CCF , cent . [days] 12 40 10 8 30 6 20 4 10 2 0 0 60 14 50 τ CCF , cent × F di ff . log( n H ) = 12 τ CCF , cent . [days] 12 40 10 8 30 6 20 4 10 2 0 0 60 14 50 τ CCF , cent × F di ff . log( n H ) = 13 τ CCF , cent . [days] 12 40 10 8 30 6 20 4 10 2 0 0 60 14 50 τ CCF , cent × F di ff . log( n H ) = 14 τ CCF , cent . [days] 12 40 10 8 30 6 20 4 10 2 0 0 Mike Goad Atlanta 2017 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 Wavelength [ ˚ Wavelength [ ˚ A] A]

  14. Constant ioniza%on models 100 10 45 log( U ) = 0 . 52 80 L ν [erg s − 1 ] 10 44 τ η [days] 60 10 43 40 10 42 20 10 41 0 100 10 45 80 log( U ) = − 0 . 48 L ν [erg s − 1 ] 10 44 τ η [days] 60 10 43 40 10 42 20 10 41 0 100 10 45 log( U ) = − 1 . 48 80 L ν [erg s − 1 ] 10 44 τ η [days] 60 10 43 40 10 42 20 10 41 0 100 10 45 log( U ) = − 1 . 98 80 10 44 L ν [erg s − 1 ] τ η [days] 60 10 43 40 10 42 20 10 41 0 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 Wavelength [ ˚ Wavelength [ ˚ A] A] Mike Goad Atlanta 2017

  15. 2 . 5 2 . 5 DRW Continuum DRW Continuum C IV , � -weighted resp. Mg II , � -weighted resp. C IV , η -weighted resp. Mg II , η -weighted resp. 2 . 0 2 . 0 Relative luminosity Relative luminosity 1 . 5 1 . 5 1 . 0 1 . 0 0 . 5 0 . 5 0 . 0 0 . 0 0 100 200 300 400 500 0 100 200 300 400 500 Time [lightdays] Time [lightdays] Aside : Mike Goad Atlanta 2017

  16. 60 RAW DILUTED 14 T char = 5 50 12 τ CCF , cent . × F di ff . τ CCF , cent . [days] 40 10 8 30 6 20 4 10 2 0 0 60 14 T char = 10 50 12 τ CCF , cent . × F di ff . Dependence on Tchar τ CCF , cent . [days] 40 10 8 30 6 20 4 10 2 0 0 Tchar (days) 60 14 T char = 20 50 12 τ CCF , cent . × F di ff . τ CCF , cent . [days] 40 10 1989 ~ 80-120 8 30 6 20 4 1993 ~ 40 10 2 0 0 60 14 2014 ~ 10-20 T char = 40 50 12 τ CCF , cent . × F di ff . τ CCF , cent . [days] 40 10 8 30 6 20 4 10 2 0 0 60 14 T char = 80 50 12 τ CCF , cent . × F di ff . τ CCF , cent . [days] 40 10 8 30 6 20 4 10 2 0 0 60 14 T char = 160 50 12 τ CCF , cent . × F di ff . τ CCF , cent . [days] 40 10 8 30 6 20 4 10 2 0 0 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 Wavelength [ ˚ Wavelength [ ˚ A] A] Mike Goad Atlanta 2017

  17. (2) Local op%mally emilng clouds (LOC) models Korista and Goad 2000,2001 At any given radius there exists a range of gas densi%es/column densi%es (or simply …..more than one pressure-law!) Spectrum dominated by selec%on effects introduced by atomic physics and general radia%ve transfer within the large pool of line-emilng en%%es Strengths: Summa%on over cloud distribu%on leads to: (i) typical AGN spectrum (ii) Ioniza:on stra:fica:on (iii) Luminosity-Radius rela:on arises naturally Mike Goad Atlanta 2017

  18. Deriving the spectrum: Give each line emilng en%ty a weight in 2-dimensions: gas density and distance Assume : analy9c, separable, and a power-law in each variable g ( n H ) ∝ n β Baldwin 1997 – composite quasar spectra best fit H if indices in both are close to -1. f ( R ) ∝ R Γ β = − 1 In our models assume : and fit for Γ Korista and Goad (2000) found a value of -1.2 gives an Acceptable fit to the line luminosi%es For NGC~5548 Mike Goad Atlanta 2017

  19. Log Nh=22 Balmer Jump Mike Goad Atlanta 2017

  20. Log Nh=23 Mike Goad Atlanta 2017

  21. Log Nh=24 Mike Goad Atlanta 2017

  22. 14 Centroid Centroid Korista and Goad 2017 AGN STORM (Nh22) 10 Korista and Goad 1993 campaign 12 10 8 8 6 6 Korista and Goad 1993 campaign 4 Korista and Goad 2017 AGN STORM 4 2 2 2000 4000 6000 8000 2000 4000 6000 8000 4 4 2 2 0 0 2000 4000 6000 8000 2000 4000 6000 8000 Mike Goad Atlanta 2017

  23. Centroid 10 Korista and Goad 1993 campaign 8 6 Korista and Goad 2017 AGN STORM (Nh24) 4 2 2000 4000 6000 8000 4 2 0 2000 4000 6000 8000 Mike Goad Atlanta 2017

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend