qgp from the quantum ground state of qcd
play

QGP from the quantum ground-state of QCD? beautiful math or New - PowerPoint PPT Presentation

QGP from the quantum ground-state of QCD? beautiful math or New Physics of QCD? Roman Pasechnik 1 Summary: stages of the micro Big Bang L eff / 4 ( 10 3 ) L eff / 4 ( 10 3 ) L eff / 4 ( 10 3 ) 1.0


  1. 
 QGP from the quantum ground-state of QCD? 
 beautiful math or “New Physics” of QCD? Roman Pasechnik � 1

  2. Summary: stages of the “micro Big Bang” L eff / λ 4 ( ⨯ 10 3 ) L eff / λ 4 ( ⨯ 10 3 ) L eff / λ 4 ( ⨯ 10 3 ) 1.0 1.0 1.0 0.5 0.5 0.5 1.2 J / λ 4 1.2 J / λ 4 1.2 J / λ 4 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 - 0.5 - 0.5 - 0.5 - 1.0 - 1.0 - 1.0 - 1.5 - 1.5 - 1.5 - 2.0 - 2.0 - 2.0 Stage I Stage II Stage III • quantum ground state 
 • (almost) classical homogeneous 
 • energy “swap” from condensate 
 formation (CE mostly 
 CE gluon condensate evolution to the fluctuations (quasiclassical pic.) + initiation of CM) • small inhomogeneities • large inhomogeneities (plasma modes) • large distances/essentially 
 • perturbative regime 
 • parametric resonance effect 
 quantum dynamics (short distances) (particle production mechanism) • domain-wall formation 2 �

  3. QCD vacuum: short vs long distances Running QCD coupling Confinement Asymptotic freedom Color charge anti-screening Short range strong interactions Color confinement! � 3

  4. Stage I 4

  5. Homogeneous gluon condensate: semi-classics Corrections are small 
 Classical YM Lagrangian: for gYM<<1 
 L cl = − 1 4 F a µ ν F µ ν F a µ ν = ∂ µ A a ν − ∂ ν A a µ + g YM f abc A b µ A c (short distances!) a ν Basis for canonical (Hamiltonian) quantisation of “condensate+waves” system: temporal (Hamilton) A a e a i A a e a i e a e a i e b k ≡ A ik k = δ ik i = δ ab 0 = 0 gauge x ) = δ ik U ( t ) + � A ik ( t, ⃗ A ik ( t, ⃗ x ) due to local SU(2) ~ SO(3) isomorphism � Ω d 3 xA ik ( t, ⃗ x ) U ( t ) ≡ 1 � 3 δ ik ⟨ A ik ( t, ⃗ x ) ⟩ ⃗ ⟨ A ik ( t, ⃗ x ) ⟩ ⃗ x = x , Ω d 3 x Zeroth-order in waves = “pre-quilibrium state”? 1.0 � ( ∂ 0 U ) 2 + g 2 U 4 � H YM ≃ H YMC = 3 ∂ 0 ∂ 0 U + 2 g 2 U 3 = 0 , 0.5 2 0.0 U � U 0 � U � 0.5 dU U ′ (0) = 0 t = − � 0 − g 2 U 4 , U (0) = U 0 , � 1.0 g 2 U 4 U � t � U 0 U 0 cos � kgU 0 t � � 1.5 0.0 0.5 1.0 1.5 2.0 5 t � T U

  6. Stage II 6

  7. Condensate+waves semi-classical system � “condensate+waves” system evolution: − δ lk ( ∂ 0 ∂ 0 U + 2 g 2 U 3 ) + ( − ∂ 0 ∂ 0 � A lk + ∂ i ∂ i � A lk − ∂ i ∂ k � A li − ge lmk ∂ i � A mi U − 2 ge lip ∂ i � A pk U A mi U + g 2 � A kl U 2 − g 2 � − ge lmi ∂ k � A lk U 2 − 2 g 2 δ lk � A ii U 2 ) + ( − ge lmp ∂ i � A mi � � � � � A pk A pi + g 2 � A ik U + g 2 � A ki U + g 2 � − 2 ge lmp � A mi ∂ i � A pk − ge lmp ∂ k � A mi � A li � A li � A ik � � � � � � � � � A il U − − − 2 g 2 � A ii � A lk U − g 2 δ lk � A pi � A pi U ) + g 2 ( � A li � A pk � A pi − � A pi � A pi � A lk ) = 0 . � tensor basis decomposition p , χ ⃗ p l = s σ l η ⃗ σ + n l λ ⃗ p p + n i n k Λ ⃗ � ψ ⃗ p ik = ψ ⃗ p λ Q λ ik + ϕ ⃗ σ ( n i s σ k + n k s σ i ) + ( δ ik − n i n k ) Φ ⃗ p p A ik = ψ ik + e ikl χ l = 1 σ + ∂ 0 Φ ∂ 0 Φ † + 1 � 2 ∂ 0 Λ ∂ 0 Λ † + ∂ 0 η σ ∂ 0 η † ∂ 0 ψ λ ∂ 0 ψ † H waves λ + ∂ 0 φ σ ∂ 0 φ † Full Hamiltonian YM σ 2 λ + p 2 σ + p 2 ΦΦ † + p 2 + ∂ 0 λ ∂ 0 λ † + p 2 ψ λ ψ † σ + p 2 λλ † 2 φ σ φ † 2 η σ η † − p 2 2 e γσ ( η σ φ † γ + φ γ η † σ ) + igp U e σγ η σ η † γ − igp U Q λγ ψ λ ψ † γ � H waves γ − igp U (2 Φ λ † − 2 λ Φ † + Λ λ † − λ Λ † ) H YM = H YMC + − igpUe σγ φ σ φ † YM ⃗ p + 2 g 2 U 2 η σ η † σ + 2 g 2 U 2 λλ † + g 2 U 2 (4 ΦΦ † + 2 ΦΛ † + 2 ΛΦ † + ΛΛ † ) � Longitudinally polarised (plasma) mode becomes physical due to interactions with the homogeneous condensate! 7

  8. Decay of the homogeneous condensate � ∂ 0 U ∂ 0 U + g 2 U 4 � H U = 3 , 2 � � H particles = 1 σ + ∂ 0 Φ ∂ 0 Φ † + 1 2 ∂ 0 Λ ∂ 0 Λ † + ∂ 0 η σ ∂ 0 η † ∂ 0 ψ λ ∂ 0 ψ † λ + ∂ 0 φ σ ∂ 0 φ † σ 2 ⃗ p λ + p 2 σ + p 2 ΦΦ † + p 2 + ∂ 0 λ ∂ 0 λ † + p 2 ψ λ ψ † σ + p 2 λλ † 2 φ σ φ † 2 η σ η † � − p 2 2 e γσ ( η σ φ † γ + φ γ η † σ ) , � � H int = 1 igp U e σγ η σ η † γ − igp U Q λγ ψ λ ψ † γ 2 ⃗ p γ − igp U (2 Φ λ † − 2 λ Φ † + Λ λ † − λ Λ † ) − igpUe σγ φ σ φ † � H H + 2 g 2 U 2 η σ η † σ + 2 g 2 U 2 λλ † + g 2 U 2 (4 ΦΦ † + 2 ΦΛ † + 2 ΛΦ † + ΛΛ † ) . 1.0 0.5 U � U 0 0.0 � 0.5 � 1.0 0 1 2 3 4 5 t � T U Ultra-relativistic gluon plasma production! 8

  9. Stage III 9

  10. QCD confinement as a dual Meissner effect type-II superconductor usual Meissner effect Superconductor L solenoid solenoid N S Flux tube Energy of the magnetic “monopole-antimonopole” pair is proportional to L (string potential) Magnetic field cannot penetrate through a superconductor, except by burning out a narrow tube where the superconductivity is destroyed (the Abrikosov vortex) The dual Meissner effect in QCD (analogous to that in dual superconductors): • the QCD vacuum as a condensate of chromo-magnetic monopoles 
 (c.f. condensation of BCS pairs in usual superconductors) • quarks are sources of chromo-electric field • inside the quark-antiquark tube the chromo-magnetic condensate is destroyed • electric field is squeezed inside the tube (the Abrikosov-Nielsen-Olesen vortex) � 10

  11. Long distances: chromo-magnetic condensate Quantum-topological (chromomagnetic) vacuum in QCD Ground-state CM condensate: at long distances: Λ cosm ∼ 10 − 47 GeV 4 ✏ vac ∼ 10 − 2 GeV 4 Vacuum in QCD has incredibly wrong energy scale… or We must be missing something very important!? 11

  12. Effective YM action approach [37] H. Pagels and E. Tomboulis, Nucl. Phys. B 143 , 485 At least, for SU(2) gauge symmetry, (1978). the all-loop and one-loop effective Lagrangians e A a µ ≡ g YM A a L cl = − 1 are practically indistinguishable (by FRG approach) 4 F a µ ν F µ ν µ a d F a µ ν ≡ g YM F a µ ν . [15] P. Dona, A. Marciano, Y. Zhang and C. Antolini, Phys. possesses well-kn Inverse running coupling 
 Rev. D 93 (2016) no.4, 043012. g - 2 is a better expansion 0.02 parameter! [14] A. Eichhorn, H. Gies and J. M. Pawlowski, Phys. Rev. D 83 (2011) 045014 [Phys. Rev. D 83 (2011) 069903]. Effective YM Lagrangian: 1.2 J / λ 4 0.2 0.4 0.6 0.8 1.0 - 0.02 Effective Lagrangian: J - 0.04 L e ff = g 2 ( J ) , J = − F a a , µ ν F µ ν L eff / λ 4 ( ⨯ 10 3 ) 4¯ - 0.06 1.0 - 0.08 0.5 1.2 J / λ 4 The energy-momentum tensor: 0.2 0.4 0.6 0.8 1.0 - 0.5 g 2 ) g 2 ) µ = 1 h � (¯ a +1 � (¯ - 1.0 i⇣ ⌘ T ν F a µ λ F νλ 4 � ν � � ν � 1 µ J g 2 J . µ - 1.5 g 2 ¯ 2 8¯ - 2.0 Equations of motion: trace anomaly: hich we r  F µ ν at J ⇤ > 0, g 2 ) ✓ 1 − � (¯ ◆� chromoelectric (CE) condensate − → D ab b =0 , g 2 ) µ = − � (¯ ν g 2 (Savvidy vacuum) ¯ 2 T µ g 2 J he only p 2¯ → − � ab − → ⇣ ⌘ D ab @ ν − f abc A c , ν ≡ ν [111] G. K. Savvidy, Phys. Lett. 71B , 133 (1977). ⇣ � →− J , J ← g 2 | g 2 ) d ln | ¯ = β (¯ appears to be NOTE: the RG equation invariant under d ln |J | /µ 4 g 2 =¯ g 2 ( |J | ) 2 | , ¯ 0 12

  13. CE condensate on non-stationary (FLRW) background Q ⌘ 32 11 ⇡ 2 e ( ⇠ Λ QCD ) � 4 T µ µ [ U ] h 4 U 4 i Savvidy (CE) vacuum Classical YM condensate ( U 0 ) 2 � 1 a � 4 ( ⇠ Λ QCD ) � 4 = 6 e e Q ( U ) = 1 Exact partial solution: − 1 on | Q | = 1, ”Time” CE instantons 
 are formed first! Quantum corrections � “Radiation” medium QCD vacuum: 
 Asymptotic tracker solution! � YM ∝ 1 /a 4 a ferromagnetic undergoing ✏ CE ! +const t !1 spontaneous magnetisation (Pagels&Tomboulis) Unstable solution! Stable solution! • In fact, both chromoelectric and chromomagnetic condensates 
 are stable on non-stationary (FLRW) background of expanding Universe 13

  14. “ Mirror” symmetry of the ground state In a vicinity of the ground state, the effective Lagrangian L e ff = J e J ' J ⇤ g 2 4¯ is invariant under g 2 ( J ∗ ) ← g 2 ( J ∗ ) , g 2 g 2 Z 2 : J ∗ ← →− J ∗ , ¯ →− ¯ � (¯ ∗ ) ← →− � (¯ ∗ ) , � (1) = � bN g 2 48 ⇡ 2 ¯ where b = 11 For pure gluodynamics at one-loop: (1) α s ( µ 2 0 ) g 2 α s = ¯ µ 2 ⌘ α s ( µ 2 ) = p |J | , µ 1 + β 0 α s ( µ 2 0 ) ln( µ 2 /µ 2 0 ) 4 π µ 2 p , 0 ⌘ |J ⇤ | as the physical scale Choosing the ground state value of the condensate p ⌘ |J | ⌘ we observe that the mirror symmetry, indeed, holds provided ↵ s ( µ 2 ! � ↵ s ( µ 2 0 ) 0 ) e J ' J ⇤ i.e. in the ground state only! 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend