pyrroc
play

PYRROC an alternative to Copper catalysts in strain promoted - PowerPoint PPT Presentation

PYRROC an alternative to Copper catalysts in strain promoted azide-alkyne cycloaddition reactions 01.06.2016 Dr. Corinna Grst OSC OrganoSpezialChemie GmbH Azide Alkyne Cycloaddition Huisgen (1960er): 1,3-dipolar cycloaddition


  1. PYRROC an alternative to Copper catalysts in strain promoted azide-alkyne cycloaddition reactions 01.06.2016 Dr. Corinna Gröst OSC OrganoSpezialChemie GmbH

  2. Azide Alkyne Cycloaddition Huisgen (1960er): 1,3-dipolar cycloaddition • Sharpless and Meldal (2002): • Cu(I) catalysis � Click Chemistry: Insensitivity against water or oxygen • Broad applicability • High yield • No or easily separable side-products • Angew. Chem., Int. Ed., 1963, 2 , 565. Angew. Chem., Int. Ed., 2002, 41 , 2596. J. Org. Chem., 2002, 67 , 3057. Angew. Chem., Int. Ed., 2001, 40 , 2004. 2

  3. SPAAC strain-promoted azide-alkyne cycloaddition Cu(I) cytotoxic click reaction through ring strain � • Wittig, Krebs (1961): Bertozzi (2004): Chem. Ber., 1961, 94 , 3260. J. Am. Chem. Soc., 2004, 126 , 15046. 3

  4. Cyclooctynes calc.: reactivity k (in M -1 s -1 ) determined through 1 H-NMR measurement in the reaction with benzyl azide. * calc. for the reaction with MeN 3 . J. Am. Chem. Soc., 2008, 130 , 11486. J. Am. Chem. Soc., 2009, 131 , 8121. ChemBioChem, 2011, 12 , 1912. Chem. - A Europ. J., 2012, 18 , 822. 4 Angew. Chem., Int. Ed., 2010, 49 , 9422. Org. Lett., 2014, 16 , 1634. J. Org. Chem., 2012, 77 , 2093.

  5. Cyclooctynes OCT BCN PYRROC Org. Biomol. Chem., 2015, 13 , 3866. 5

  6. PYRROC Org. Biomol. Chem., 2015, 13 , 3866. 6

  7. PYRROC Org. Biomol. Chem., 2015, 13 , 3866. 7

  8. PYRROC 12 PYRROC alkyne Org. Biomol. Chem., 2015, 13 , 3866. 8

  9. PYRROC 12 PYRROC 220 200 1/[PYRROC] / M -1 180 1/[ 44 ] / M-1 160 140 120 100 k = 0.058 ± 0.004 M -1 s -1 80 60 0 500 1000 1500 2000 Time / sec Zeit / s 15 mM y = 0.058 x + 72.84 R2 = 0.993 Org. Biomol. Chem., 2015, 13 , 3866. 9

  10. FRET Förster resonance energy transfer exitation emission emission fluorophore 1 fluorophore 1 fluorophore 2 FRET Fluorophore 1 Fluorophore 2 10

  11. Org. Biomol. Chem., 2015, 13 , 3866. 11

  12. PYRROC Alkin 50 BODIPY(FL)-PYRROC 400 BODIPY(TMR)-Azid BODIPY(TMR)-azide Triazol 51 Triazole Intensität / a.u. Intensity / a.u. 300 200 3,0 1/[BODIPY(FL)-PYRROC]/ 10 6 M -1 PBS, 3 µM 100 2,5 y = 1.40 *104 x + 3.74 * 105 x = Zeit/ min 1/[ 52 ] / 106 * M-1 0 R2 = 0.99 2,0 500 520 540 560 580 600 620 640 Wave length / nm Wellenlänge / nm 1,5 1,0 0,5 Alkyne 0,0 0 20 40 60 80 100 120 Time / min Intensity / a.u. Zeit / min k = 234 ± 2 M -1 s -1 Wave length / nm Org. Biomol. Chem., 2015, 13 , 3866. 12

  13. PYRROC k = 13.9 ± 0.3 M -1 s -1 k = 930 ± 26 M -1 s -1 k = 492 ± 43 M -1 s -1 measured in PBS (phosphate buffered saline) Org. Biomol. Chem., 2015, 13 , 3866. 13

  14. Potential applications Biochemistry Fluorescence-labelling of biomolecules Material Science in cells Synthesis of macromolecules and polymers in Organisms Bioorthogonal reactions with ≥ 2 functionalities in cells Drug discovery Synthesis of compound libraries Lead structure optimization Target Guided Synthesis (TGS) 14

  15. Fluorescence-labelling of biomolecules Labelling of glycanes, proteins, enzymes e.g. live cell imaging of cell membrane with Pyrroc: fluorescent + highly reactive PYRROC in aq. media cell membrane + functunalization to fit special needs (in solubility, size, reaction rate) 15 J. Am. Chem. Soc., 2008, 130 , 11486. Chem. Rev., 2013, 113 , 4905 . ChemBioChem, 2015, 16 , 1314. J. Am. Chem. Soc., 2003, 125 , 4686.

  16. Bioorthogonal reactions orthogonal synthetic handles sequential biomolecule conjugations e.g. development of biotherapeutics, antibody–drug conjugates, synthetic vaccines Functionalization via SPAAC c Additional Functionalization possible Functionalization Reaction site via CuAAC for albumine 16 Angew. Chem., Int. Ed., 2012, 51 , 6320. Chem. Soc. Rev., 2007, 36 , 1249-62. Org. Biomol. Chem ., 2012, 10 , 548.

  17. Synthesis of macromolecules Polymers Hydrogels + more functionalization and branching possible + interesting new properties + no side products (Cu,…) 17 Angew. Chem., Int. Ed., 2008, 46 , 1018. Nat. Chem ., 2011, 3 , 925. Chem. Soc. Rev., 2007, 36 , 1249-62. Pharm. Res. 2012, 29 , 902.

  18. Compound libraries Synthesis of compound libraries and lead structure optimization through high-throughput screening Compound library + fast reaction + no side products (Cu,…) + new scaffold 18

  19. Target Guided Synthesis Reaction at the active side of the enzyme e.g. screening for inhibitors of Histonedeacetylase, HIV-1 Protease or Acetylcholinesterase 19 Angew. Chem., Int. Ed., 2002, 41 , 1053. Angew. Chem., Int. Ed., 2010, 49 , 6817. Angew. Chem., Int. Ed., 2006, 45 , 1435.

  20. Target Guided Synthesis Reaction on protein surfaces inhibition of protein-protein interactions PYRROC + large molecules synthesized inside the cell + fast reaction + selective + Isomer-free preparation of inhibitors favorable 20

  21. Summary Fluorescence-labelling of biomolecules Bioorthogonal reactions Functionalization via SPAAC Additional Functionalization possible Functionalization Reaction site via CuAAC for albumine k up to 930 M -1 s -1 Synthesis of macromolecules Drug discovery Compound library 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend