projections in eberlein compactifications
play

Projections in Eberlein compactifications Nico Spronk (U. Waterloo) - PowerPoint PPT Presentation

Projections in Eberlein compactifications Nico Spronk (U. Waterloo) Fields Institute, COSy 2014 A classical decomposition G locally compact group : G U ( H ) continuous unitary representation Theorem [Jacobsde LeeuwGlicksberg]


  1. Projections in Eberlein compactifications Nico Spronk (U. Waterloo) Fields Institute, COSy 2014

  2. A classical decomposition G – locally compact group π : G → U ( H ) continuous unitary representation Theorem [Jacobs–de Leeuw–Glicksberg] π = π wm ⊕ π ret on p wm H ⊕ 2 p ret H where � w � H wm = ξ ∈ H : 0 ∈ π ( G ) ξ � w � w whenever η ∈ π ( G ) ξ H ret = ξ ∈ H : ξ ∈ π ( G ) η .

  3. Semigroup perspective ( ball ( B ( H )) , w . o . t . ) – semitopological semigroup i.e. x �→ xy , yx each continuous for each fixed y w . o . t . – compact semitopological semigroup G π = π ( G ) E.g.: λ : G → U ( L 2 ( G )) left reg. rep’n, G λ = G ∞ Theorem [de Leeuw–Glicksberg, Troallic] • p ret minimal projection (idempotent) in G π ret = p ret G π compact group & ideal in G π • G π

  4. Eberlein compactification S – compact semitop’l semigroup called Eberlein if S ֒ → ( ball ( B ( H )) , w . o . t . ) homeo’lly ̟ : G → U ( H ) – universal representation Theorem [Megrelishvili, S.–Stokke] G E := G ̟ universal Eberlein compactification of G S Eberlein semigroup, η : G → S homo’m w. dense range (i.e. ( η, S ) is an Eberlein compactification of G ) η : G E ։ S ⇒ ∃ extension ˜ Can be done for non-locally compact G as well.

  5. Eberlein groups & topologies ( G , τ G ) – (complete) topological group � � s �→ � π ( s ) ξ | η � : π : G → U ( H ) τ G - w . o . t . -cts. B ( G ) = ξ, η ∈ H , H Hil. space ( G , τ G ) is Eberlein if τ G = σ ( G , B ( G )). → ̟ ( G ) ⊂ G E is a homeomorphism. Equivalently, ̟ : G ֒ E.g. ( G , τ G ) locally compact, or discrete. Coarser Eberlein topologies: � T ( G ) = { τ ⊆ τ G : ( G , τ ) top’l group, τ = σ ( G , B τ ( G )) } where B τ ( G ) = B ( G ) ∩ C ( G , τ ).

  6. ... Eberlein topologies τ ∈ � T ( G ) N τ = � { U : U τ -nbhd. of e } is a τ -closed normal subgroup ¯ τ – (Hausdorff) toplogy induced on G / N τ U ¯ τ – two-sided uniformity on G / N τ generated by ¯ τ . Facts τ is an Eberlein group U ¯ • G τ = ( G / N τ , ¯ τ ) • ∃ cts. homo’m η τ : G → G τ w. dense range η τ : G E ։ G E • ∃ unique cts. ext’n ˜ τ

  7. Relations to central projections ZE ( G E ) = { z ∈ G E : z 2 = z & tz = zt ∀ t ∈ G E } Theorem (after [Ruppert] for abelian G ) (i) ∃ map T : ZE ( G E ) → � T ( G ): • define for z , η z : G → G E by η z ( s ) = z ̟ ( s ) • let T ( z ) = σ ( G , { η z } ) (ii) ∃ map E : � T ( G ) → ZE ( G E ): τ ( { e τ } ) ⊂ G E admits a η − 1 • given τ , the compact semigroup ˜ unique min’l idempotent, z = E ( τ ) [Ruppert, Troallic] • E ( τ ) is central in G E Notes. • E ◦ T = id ZE ( G E ) , T ◦ E ( τ ) ⊇ τ . = G E ( z ) := { t ∈ G E : tz = t & tt ∗ = z = t ∗ t } • G T ( z ) ∼ • τ ⊆ τ ′ ⇒ E ( τ ) ≤ E ( τ ′ ), z ≤ z ′ ⇒ T ( z ) ⊆ T ( z ′ )

  8. � � When is T ◦ E ( τ ) = τ ? η τ ′ � τ ⊆ τ ′ in � T ( G ) G G τ ′ ❆ get cts. homo’ms w. dense range ❆ ❆ η τ ′ ❆ ❆ η τ ′ η τ ❆ τ ◦ η τ ′ = η τ τ ❆ ❆ G τ Co-compact/Cauchy containment τ ⊆ c τ ′ in � T ( G ) if τ ⊆ τ ′ & • ker η τ ′ τ compact & η τ ′ τ open. • Eq’ly, each τ -Cauchy net in G admits τ ′ -Cauchy refinement. Theorem τ ⊆ τ ′ in � τ ⊆ c τ ′ ⇔ E ( τ ) = E ( τ ′ ) T ( G ): & τ ⊆ c T ◦ E ( τ ) “Reasonable” Eberlein topologies: T ( G ) = T ( ZE ( G E )) ⊆ � T ( G )

  9. Jacobs–de Leeuw–Glicksberg revisted B ( G ) ∼ = ( ̟ ( G ) ′′ ) ∗ , Banach algebra of functions on G : � π ( · ) ξ | η � + � π ′ ( · ) ξ ′ | η ′ � = � π ⊕ π ′ ( · ) ξ ⊕ ξ ′ | η ⊕ η ′ � � π ( · ) ξ | η �� π ′ ( · ) ξ ′ | η ′ � = � π ⊗ π ′ ( · ) ξ ⊗ ξ ′ | η ⊗ η ′ � Almost periodic (Bohr) topology τ ap = T ( p ret ) satisfies ap ⊕ π τ ap , p ret = π ′′ ( E ( τ ap )) • π : G → U ( H ) rep’n, π = π τ ⊥ • B ( G ) = I τ ap ( G ) ⊕ B τ ap ( G ), B τ ap ( G ) = E ( τ ap ) · B ( G ), Theorem Let τ ∈ T ( G ). Then • π : G → U ( H ) rep’n, π = π τ ⊥ ⊕ π τ , π τ = π ′′ ( E ( τ )) π • B ( G ) = I τ ( G ) ⊕ B τ ( G ) where B τ ( G ) = E ( τ ) · B ( G ), I τ ( G ) ⊳ B ( G )

  10. Operator amenability of B ( G ) G locally compact Theorem [Dales–Ghahramani–Helemski˘ ı, Brown–Moran] Measure algebra M ( G ) (op.) amenable ⇔ G discrete & amenable. G abelian: B ( G ) ∼ = M ( � G ) (op.) amenable ⇔ G compact. False conjecture: B ( G ) op. amenable ⇔ G compact. Theorem [Runde-S.] (after [Ilie-S.]) G n , p = Q n p ⋊ GL n ( O p ) has B ( G n , p ) op. amenable. Proposition B ( G ) op. amenable ⇒ | ZE ( G E ) | = |T ( G ) | < ∞ . un] G abelian non-compact, | ZE ( G E ) | ≥ c [Elg¨

  11. Thank you for your attention!

  12. Thank you to Thematic Program organizers Tony & Matthias & to COSy organizers Man-Duen, George, Tony & Matthias & to the Fields Institute staff for a great term and conference!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend