processes with summable partial autocorrelations
play

Processes with summable partial autocorrelations ukasz Dbowski - PowerPoint PPT Presentation

Processes with summable partial autocorrelations ukasz Dbowski ldebowsk@ipipan.waw.pl Institute of Computer Science Polish Academy of Sciences 14th European Young Statisticians Meeting, Debrecen 2005 Introduction Building blocks Summable


  1. Processes with summable partial autocorrelations Łukasz Dębowski ldebowsk@ipipan.waw.pl Institute of Computer Science Polish Academy of Sciences 14th European Young Statisticians Meeting, Debrecen 2005

  2. Introduction Building blocks Summable PACF Applications Two autocorrelation functions ( X i ) i ∈ Z — weakly stationary process with Var ( X i ) = 1 (ordinary) autocorrelation (ACF): ρ n := Corr ( X n ; X 0 ) partial autocorrelation (PACF): ; Y 1 : n − 1 α n := Corr ( Y 1 : n − 1 ) n 0 Φ n : m ← best linear predictor of X k given X n , ..., X m k Y n : m = X k − Φ n : m ← innovation k k Schur 1917, Durbin 1960, Ramsey 1974 : there exists bijection ( ρ 1 , ..., ρ n ) ← → ( α 1 , ..., α n ) ( ρ k ) k ∈ Z strictly positive definite ⇐ ⇒ | α m | < 1 for m ∈ N

  3. Introduction Building blocks Summable PACF Applications Main result Let � ∞ k = 1 | α k | < ∞ with | α k | < 1 . Then: (i) There exist representations Z l = � ∞ k = 0 π k X l − k and X l = � ∞ k = 0 ψ k Z l − k , where ( Z i ) i ∈ Z is white noise. (ii) For n ∈ N we have n n � 2 � 1 + | α k | | ρ k | 2 ≤ � � . 1 − | α k | k = − n k = 1 — HOLDS FOR ALL STATIONARY PROCESSES (iii) If α k ∈ R for all k then ∞ ∞ 1 + ( ± 1 ) k α k � ( ± 1 ) k ρ k = � . 1 − ( ± 1 ) k α k k = −∞ k = 1

  4. Introduction Building blocks Summable PACF Applications The derivation of the theorem partial autocorrelation ↓ finite innovations ↓ autoregressive representation ↓ moving average representation ↓ autocorrelation

  5. Introduction Building blocks Summable PACF Applications Introduction 1 Building blocks 2 Summable PACF 3 Applications 4

  6. Introduction Building blocks Summable PACF Applications Finite innovations Φ m : n — best linear predictor of X k given X m , X m + 1 , ..., X n k Y n + 1 : p − 1 Y m : n := X k − Φ m : n , Z n p p := ˛ — innovations k k ˛ ˛ ˛ Y n + 1 : p − 1 ˛ ˛ ˛ ˛ ˛ ˛ p ˛ ˛ n n Y p − n : p − 1 � Z p − n − 1 � = − φ nk X p − k , = π nk X p − k , p p k = 0 k = 0 n ψ nk Z p − n − 1 � X p = . p − k k = 0 By Durbin-Levinson recursion, π nk = − φ nk / � n � 1 − | α i | 2 , i = 1 φ nk = φ n − 1 , k − α ∗ n φ ∗ φ 00 = − 1 , n − 1 , n − k , � k j = 0 π nj ψ n − j , k − j = [ [ k = 0 ] ] .

  7. Introduction Building blocks Summable PACF Applications Wold decomposition Φ −∞ : p − 1 — best linear predictor of X p given ( X n ) n < p p Process is called nondeterministic if X p − Φ −∞ : p − 1 �≡ 0 . p Theorem (Wold 1938, Pourahmadi 2001) If ( X i ) i ∈ Z is nondeterministic then lim n →∞ Z − n = Z l , l lim n →∞ ψ nk = ψ k , and lim n →∞ π nk = π k , where ψ k := Cov ( Z l − k , X l ) , and π k are given by condition � k j = 0 π j ψ k − j = [ [ k = 0 ] ] . Furthermore, X p = � ∞ k = 0 ψ k Z p − k + V p , ( V i ) i ∈ Z is deterministic, uncorrelated with white noise ( Z i ) i ∈ Z .

  8. Introduction Building blocks Summable PACF Applications Moving average and autoregressive representations ∞ n � � MA( ∞ ): X p = ψ k Z p − k ⇔ lim ( ψ nk − ψ k ) Z p − k = 0 n →∞ k = 0 k = 0 ∞ n � � AR( ∞ ): Z p = π k X p − k ⇔ lim ( π nk − π k ) X p − k = 0 n →∞ k = 0 k = 0 Theorem m | ψ mk − ψ nk | 2 = 0 ⇐ � ⇒ MA( ∞ ) exists. n →∞ sup lim m > n k = 0 m � n →∞ sup lim | π mk − π nk | = 0 = ⇒ AR( ∞ ) exists. m > n k = 0 If � ∞ k = 0 | ψ k | < ∞ and � ∞ k = 0 | π k | < ∞ then MA( ∞ ) exists ⇐ ⇒ AR( ∞ ) exists.

  9. Introduction Building blocks Summable PACF Applications Bounds for finite innovations φ n ( z ) := � n k = 0 φ nk z k Theorem Let φ nj := 0 for j > n . We have: m m n � � � | φ mj − φ nj | ≤ ( 1 + | α k | ) − ( 1 + | α k | ) if m ≥ n , j = 0 k = 1 k = 1 n � � � 1 − ( ± 1 ) k α k φ n ( ± 1 ) = if α k ∈ R for k ≤ n , k = 1 � n n � � � | φ n ( z ) | ∈ ( 1 − | α k | ) , ( 1 + | α k | ) if | z | ≤ 1 . k = 1 k = 1

  10. Introduction Building blocks Summable PACF Applications Introduction 1 Building blocks 2 Summable PACF 3 Applications 4

  11. Introduction Building blocks Summable PACF Applications What happens for summable PACF? (I) π n ( z ) := � n π ( z ) := � n k = 0 π nk z k k = 0 π k z k Lemma If � ∞ k = 1 | α k | < ∞ with | α k | < 1 then n →∞ ( π nk ) k ∈ N = ( π k ) k ∈ N in ℓ 1 , lim n →∞ sup lim | π n ( z ) − π ( z ) | = 0 , | z |≤ 1 �� ∞ � � � � ∞ 1 −| α k | 1 + | α k | , � ∞ 1 + | α k | k = 0 | π k | , | π ( z ) | ∈ , k = 1 k = 1 1 −| α k | � 1 − ( ± 1 ) k α k π ( ± 1 ) = � ∞ k = 1 1 +( ± 1 ) k α k so AR( ∞ ) representation exists.

  12. Introduction Building blocks Summable PACF Applications What happens for summable PACF? (III) For summable PACF, we have ψ ( z ) = 1 /π ( z ) for | z | ≤ 1 and � ∞ k = 0 | π k | < ∞ but not � ∞ k = 0 | ψ k | < ∞ in general. By Wold decomposition, MA( ∞ ) representation exists iff � π ρ k = 1 | ψ ( e i ω ) | 2 e ik ω d ω for k ∈ N . (1) 2 π − π We have two cases: For AR ( n ) processes, π ( z ) = π n ( z ) � = 0 for | z | < r , r > 1 , so � ∞ k = 0 | ψ k | < ∞ and MA( ∞ ) representation exists. Hence (1) holds. For general summable PACF, we have lim n →∞ sup | z |≤ 1 | 1 /π n ( z ) − ψ ( z ) | = 0 so (1) holds. Hence MA( ∞ ) representation exists.

  13. Introduction Building blocks Summable PACF Applications What happens for summable PACF? (II) � π 1 − π | ψ ( e i ω ) | 2 e ik ω d ω , where ψ ( z ) = 1 /π ( z ) . We have ρ k = 2 π By Parseval identity, ∞ � π ∞ � 2 � 1 + | α k | | ρ k | 2 = 1 � | ψ ( e i ω ) | 4 d ω ≤ � . 2 π 1 − | α k | − π k = −∞ k = 1 By Riesz-Fischer theorem, if α k ∈ R for k ∈ N then ∞ ∞ 1 + ( ± 1 ) k α k ( ± 1 ) k ρ k = | ψ ( ± 1 ) | 2 = � � . 1 − ( ± 1 ) k α k k = −∞ k = 1

  14. Introduction Building blocks Summable PACF Applications Introduction 1 Building blocks 2 Summable PACF 3 Applications 4

  15. Introduction Building blocks Summable PACF Applications Classification of Gaussian processes (assuming | α k | < 1 in conditions for α k ) ergodic lim k →∞ ρ ( k ) = 0 (mixing) k = 1 | ρ ( k ) | 2 < ∞ k = 1 | α k | 2 < ∞ (nondeterministic) � ∞ � ∞ AR ( ∞ ) exists MA ( ∞ ) exists (regular) � ∞ k = 1 | α k | < ∞ completely nondeterministic k = 1 k | α k | 2 < ∞ (finitary) � ∞

  16. Introduction Building blocks Summable PACF Applications Counterintuitive corollaries ∞ ∞ 1 + α k � � ρ k = 1 − α k k = −∞ k = 1 ⇒ � ∞ (a) α m ≥ 0 , | α m | ր = k = −∞ ρ k ր ⇒ � ∞ (b) α m ≤ 0 , | α m | ր = k = −∞ ρ k ց (c) α m > 0 , α k ≥ a > 0 for n distinct k � n � 1 + a = ⇒ ρ k > 0 for at least distinct k 1 − a

  17. Introduction Building blocks Summable PACF Applications An illustration of property (c) � 0 . 5 if n ≤ N Let α n = if n > N . Then: 0 1.2 N=1 N=3 N=5 1 N=7 N=9 0.8 | ρ k | 0.6 0.4 0.2 0 1 10 100 1000 k

  18. Introduction Building blocks Summable PACF Applications The end Thank you

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend