probing the matter power spectrum with the clustering
play

Probing the matter power spectrum with the clustering ratio of - PowerPoint PPT Presentation

Frontiers of Fundamental Physics (Marseille, July 2014) Probing the matter power spectrum with the clustering ratio of galaxies Bel & Marinoni 2014, A&A, 563, 36 Bel, Marinoni, Granett, Guzzo, Peacock et al. (The VIPERS Team) 2014, ,


  1. Frontiers of Fundamental Physics (Marseille, July 2014) Probing the matter power spectrum with the clustering ratio of galaxies Bel & Marinoni 2014, A&A, 563, 36 Bel, Marinoni, Granett, Guzzo, Peacock et al. (The VIPERS Team) 2014, , A&A, 563, 37 Bel, Brax, Marinoni & Valageas 2014, submitted, arXiv: 1406.3347B Julien BEL Osservatorio Astronomico di Brera ( with L. Guzzo) Collaborators: P. BRAX, C. MARINONI and P. VALAGEAS

  2. Outline • Goal: fixing the matter power spectrum • Tool: a new clustering statistic, the clustering ratio • Test: simulations • Results: -Omega_m from SDSS DR7 and VIPERS PDR1 -f R 0 from SDSS DR7 and DR10 2

  3. The Matter power spectrum Perturbation Theory 3

  4. The Matter power spectrum Perturbation Theory b δ N i i ∑ δ = g , R R i ! i 0 = Fry & Gazta ñ aga (1993) 3

  5. The Matter power spectrum Perturbation Theory b δ N i i ∑ δ = g , R R i ! i 0 = Fry & Gazta ñ aga (1993) 2 f 2 δ R z = δ g , R + µ k δ g , R Kaiser (1987) 3

  6. Statistical properties of smoothed over-densities Variance of fluctuations in spheres: 2 (  2 x ) σ g , R = δ g , R R 4

  7. Statistical properties of smoothed over-densities Variance of fluctuations in spheres: 2 (  2 x ) σ g , R = δ g , R 2-point correlation function: ξ g , R ( r ) = δ g , R (  ) δ g , R (  x +  x r ) r R 4

  8. Statistical properties of smoothed over-densities Perturbation Theory DEC DEC RA Survey description in Guzzo et al. (arXiv:1303.2623G) and data 5 access to PDR-1 in Garilli et al. (arXiv:1310.1008G)

  9. Statistical properties of smoothed over-densities Perturbation Theory DEC DEC RA Survey description in Guzzo et al. (arXiv:1303.2623G) and data 5 access to PDR-1 in Garilli et al. (arXiv:1310.1008G)

  10. Statistical properties of smoothed over-densities Perturbation Theory DEC DEC RA Survey description in Guzzo et al. (arXiv:1303.2623G) and data 5 access to PDR-1 in Garilli et al. (arXiv:1310.1008G)

  11. Dynamics of the inhomogeneous universe Perturbation Theory   ( t , x ) ( t ) ρ − ρ ( t , x ) ρ δ = ρ ρ ( t ) ρ    x x x Homogeneous Background Deviations on smaller scales d 2 δ dt 2 + 2 H d δ dt − 3 2 Ω m H 2 δ = 0 Linear evolution of fluctuations: (In Newtonian approximation) 6

  12. Dynamics of the inhomogeneous universe Perturbation Theory   ( t , x ) ( t ) ρ − ρ ( t , x ) ρ δ = ρ ρ ( t ) ρ    x x x Homogeneous Background Deviations on smaller scales d 2 δ dt 2 + 2 H d δ dt − 3 2 Ω m H 2 δ = 0 Linear evolution of fluctuations: (In Newtonian approximation) # & − g R + f ( R ) d 4 x ∫ S = + L m Modification of Einstein-Hilbert action: % ( $ 16 π G ' (Starobinsky 1980) f ( R ) = − 2 Λ − c 2 f R 0 N + 1 R 0 Power law function of the Ricci scalar : R N N (Carroll et al. 2007, Sotiriou 2010) 7

  13. Dynamics of the inhomogeneous universe Perturbation Theory   ( t , x ) ( t ) ρ − ρ ( t , x ) ρ δ = ρ ρ ( t ) ρ    x x x Homogeneous Background Deviations on smaller scales d 2 δ dt 2 + 2 H d δ dt − 3 2 Ω m H 2 δ g eff ( k ) = 0 Linear evolution of fluctuations: (In Newtonian approximation) k 2 / 3 g eff ( k ) = 1 + Scale dependency : a 2 m 2 + k 2 m − 2 ≡ 3 d 3 f Ricci scalar: N + 1 d 3 R = − 3( N + 1) f R 0 c 2 R 0 ! $ R ( a ) = 6 2 H 2 + dH R N + 2 # & " dt % 7

  14. Statistical properties of smoothed over-densities 2 ( z ) = D 2 ( z ). σ 8 2 (0). F σ R variance of smoothed matter field: R 2-point correlation function of smoothed matter field: ξ R ( r , z ) = D 2 ( z ). σ 8 2 (0). G R ( r ) 8

  15. Statistical properties of smoothed over-densities 2 ( z ) = σ 8 2 (0). F R ( z ) σ R variance of smoothed matter field: 2 (0). G R ( r , z ) ξ R ( r , z ) = σ 8 2-point correlation function of smoothed matter field: 8

  16. Statistical properties of smoothed over-densities 2 ( z ) = σ 8 2 (0). F R ( z ) σ R variance of smoothed matter field: 2 (0). G R ( r , z ) ξ R ( r , z ) = σ 8 2-point correlation function of smoothed matter field: + ∞ + ∞ 2 2 ( ) ( ) ( ) W kR d ln k ( z ) W kR j kr d ln k ∫ Δ ∫ Δ k TH k TH 0 0 0 F G ( r ) and = = R R + ∞ + ∞ 2 2 ( ) ( ) W kr d ln k ( z ) W kr d ln k ∫ Δ ∫ Δ k TH 8 k TH 8 0 0 3 4 k P ( k ) is the dimensionless power spectrum Δ = π where k 3 [ ] W TH ( kR ) sin( kR ) kR cos( kR ) and = − 3 ( kR ) Bel & Marinoni 2012 (MNRAS) 8

  17. Statistical properties of smoothed over-densities 2 ( z ) = σ 8 2 (0). F R ( z ) σ R variance of smoothed matter field: 2 (0). G R ( r , z ) ξ R ( r , z ) = σ 8 2-point correlation function of smoothed matter field: + ∞ + ∞ 2 2 ( ) ( ) ( ) W kR d ln k ( z ) W kR j kr d ln k ∫ Δ ∫ Δ k TH k TH 0 0 0 F G ( r ) and = = R R + ∞ + ∞ 2 2 ( ) ( ) W kr d ln k ( z ) W kr d ln k ∫ Δ ∫ Δ k TH 8 k TH 8 0 0 • Redshift evolution • Non linear bias • Redshift distortions 8

  18. The clustering ratio The galaxy clustering ratio: The matter clustering ratio: η g , R ( r ) ≡ ξ g , R ( r ) η R ( r ) = G R ( r ) 2 F R σ g , R 1 δ + b 2 δ 2 + ... Bias between galaxy and matter fluctuations: δ g = b 0 + b 2 If the second order bias coefficient satisfies to | b 2 / b 1 | < 1 z ( r ) = η R ( r ) η g , R 9

  19. The clustering ratio The galaxy clustering ratio: The matter clustering ratio: η g , R ( r ) ≡ ξ g , R ( r ) η R ( r ) = G R ( r ) 2 F R σ g , R 1 δ + b 2 δ 2 + ... Bias between galaxy and matter fluctuations: δ g = b 0 + b 2 If the second order bias coefficient satisfies to | b 2 / b 1 | < 1 z ( r ) = η R ( r ) η g , R What you see (clustering of galaxies) is what you get (clustering of matter) 9

  20. The clustering ratio Vs Galaxy bias Impact of scale dependent bias: Analysis performed on HOD galaxy mock catalogues described in de la Torre et al. (2013) 10

  21. The clustering ratio as a cosmological test The galaxy clustering ratio: The matter clustering ratio: η g , R ( r ) ≡ ξ g , R ( r ) η R ( r ) = G R ( r ) 2 F R σ g , R z ( r ) = η R ( r ) η g , R Alcock-Paczynski Power spectrum 11

  22. The clustering ratio as a cosmological test z ~1     z ( r , z ( r , )/ η g , R true ) − 1 η g , R Ω Ω η R ( r , )/ η R ( r , true ) − 1 Ω Ω 12

  23. SDSS DR7 + VIPERS PDR1 Planck 13

  24. Measuring the f R 0 parameter of modified gravity The galaxy clustering ratio: The matter clustering ratio: η g , R ( r ) ≡ ξ g , R ( r ) η R ( r , z ) = G R ( r , z ) 2 F R ( z ) σ g , R z ( r ) = η R ( r ) η g , R Fixed by the expansion rate Power spectrum (Planck) d 2 δ dt 2 + 2 H d δ dt − 3 2 Ω m H 2 δ g eff ( k ) = 0 14

  25. Sloan Digital Sky Survey Data Release 7 + 10 The galaxy clustering ratio: The matter clustering ratio: η g , R ( r ) ≡ ξ g , R ( r ) η R ( r ) = G R ( r ) 2 F R σ g , R η g , R ( r ) = η R ( r ) Alcock-Paczynski Power spectrum 15

  26. Constraints of deviation from Einstein’s gravity th ( z i )) 2 3 ( η g , R ( z i ) − η R χ 2 = ∑ Likelihood analysis: 2 σ i i = 1 η g , R ( r ) = η R ( r ) Alcock-Paczynski Power spectrum f ( R ) = − 2 Λ − c 2 f R 0 N + 1 R 0 16 R N N

  27. Conclusions • A new clustering statistic: the galaxy clustering ratio η g , R = ξ g , R σ 2 g , R - Its amplitude is the same for galaxies and matter - It is weakly affected by redshift-space distortions - The estimator is simple (count-in-cell) and robust (tests on simulations) • Assuming a flat LambdaCDM universe and combining VIPERS and SDSS measurements Ω m = 0.274 ± 0.017 • Adapted to cosmological tests of gravitation (quasi-linear scale) • Assuming Planck LCDM background cosmology f R 0 < 3 × 10 − 6 • Next: include massive neutrinos and constrain their mass 17

  28. The clustering ratio in the weakly non linear regime The galaxy clustering ratio: η g , R ( r ) ≡ ξ g , R ( r ) 1 h -3 Gpc 3 comoving 2 σ g , R output at z=1 of MultiDark simulation Smith et al. (2003 ) (Prada et al. 2012) Linear 14 millions of Haloes with masses n = r between 10 11.5 h -1 R and 10 14.5 h -1 solar masses 10

  29. The clustering ratio Vs Halo bias Real space (comoving output): Redshift space (light cone): η g , R ( r ) ≡ ξ g , R ( r ) η R ( r ) = G R ( r ) 2 F R σ g , R What you see (clustering of galaxies) is what you get (clustering of matter) n = r R = 3 11

  30. Luminosity dependence in SDSS 11

  31. Application of the strategy (SDSS) η R L inear P erturbation T heory (weak) (strong) PRIORS: PRIORS: 0 1 ≤ Ω ≤ m • On Ho from HST 0 1 ≤ Ω ≤ • On baryonic X 1 . 5 w 0 . 5 density from Ω − ≤ ≤ − Likelihood X BigBang 0 . 4 h 1 ≤ ≤ Nucleosynthesis 2 0 . h 0 . 03 ≤ Ω ≤ • On the spectral b index from CMB 0 . 9 n 1 . 1 ≤ ≤ s D istance - ESTIMATOR R edshift R elation η g , R 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend