probing proton structure at very high q
play

Probing proton structure at very high Q Masahiro Kuze Department of - PowerPoint PPT Presentation

2 Probing proton structure at very high Q Masahiro Kuze Department of Physics Tokyo Institute of Technology Introduction F 2 measurement and PDF fit 2 region, NC and CC High- Q 2 region Low- Q Summary and prospects


  1. 2 Probing proton structure at very high Q Masahiro Kuze Department of Physics Tokyo Institute of Technology � Introduction � F 2 measurement and PDF fit 2 region, NC and CC � High- Q 2 region � Low- Q � Summary and prospects kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 1

  2. HERA ep Collider at DESY/Hamburg HERA luminosity 1992 – 2000 Integrated Luminosity (pb -1 ) 70 70 2000 60 60 50 50 40 40 1997 1999 e + 30 30 20 20 1999 e - 1996 95 10 10 98 94 93 92 15.03. Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec + or e − ) ⇒ E p =920 GeV ⊗ E e =27.5 GeV (e • s = 318 GeV • 2 colliding experiments and 2 fixed-target experiments -1 e + p, ~15 pb -1 e − p (‘98-’99) for H1 or ZEUS • On-tape luminosity: ~110 pb kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 2

  3. Deep Inelastic Scattering (DIS) • Probe the proton = our most familiar micro-cosmos with a point-like lepton probe. ‘giant electron-microscope’ • 1/ Q (momentum transfer) gives the spacial resolution. • Bjorken x : Fractional momentum of a parton in the nucleon. 2 =sxy • y =(1-cos θ *)/2 (scattering angle in CM system) Q • Neutral or Charged current in t-channel propagator kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 3

  4. Kinematic region probed Q 2 (GeV 2 ) • > 100x larger kinematic reach 10 5 compared to fixed-target DIS H1 experiments at CERN, DESY, 10 4 ZEUS FNAL, SLAC… (if proton is at rest, Fixed Target Experiments: HERA CM energy means E e =54 TeV ) CCFR, NMC, BCDMS, 10 3 E665, SLAC y=1 (HERA √ s=320 GeV) 10 2 2 , probe the validity of • At high Q SM/QCD at smallest distance → 10 Quark structure? New particles? 2 =40,000 GeV 2 → 1/ Q =0.001 fm) ( Q 1 2 , probe the low- x region • At low Q → very soft constituents of proton; -1 10 Saturation? Breakdown of standard -6 -5 -4 -3 -2 -1 10 10 10 10 10 10 1 DGLAP formalism (BFKL) ? x kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 4

  5. The Detectors ZEUS Detector • Uranium-Scintillator calorimeter – σ ( E ) / E = 18% / for electrons E • • for hadrons σ ( E ) / E = 35% / E Central tracking detector – • σ ( p T ) / p T = T ⊕ 0.0065 ⊕ 0.0014 / p 0.0058 p T e → ← p H1 Detector • – Liquid-Ar calorimeter σ ( E ) / E = 12% / E • for electrons for hadrons • σ ( E ) / E = 50% / E Central tracking detector – 2 out of (E e , θ e , E h , θ h ) 2 ) → Reconstruction of ( x, Q kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 5

  6. Cross section & Structure functions NC differential cross section for ep → eX reaction • 2 σ d 2 2 πα ± e p + F 2 ( x, Q 2 ) Y − x F 3 ( x, Q 2 ) − y 2 F L ( x, Q 2 )] [Y = + 2 4 dxdQ xQ F 2 = Σ xq f + ( x, Q 2 )[ e f 2 − 2 e f v f v e P Z + ( v f 2 + a f 2 )( v e 2 + a e 2 ) P Z 2 ] x F 3 = Σ xq f − ( x, Q 2 )[ − 2 e f a f a e P Z + 4 v f a f v e a e P Z 2 ] (f=u,d,c,s,b) ± 2 2 (Parton Distribution Functions) = xq ) ± xq xq f ( x , Q f ( x , Q ) f − 2 2 θ W ⋅ Q 2 /( Q 2 + M Z 2 ) (Z-exchange & γ− Z interference) P Z = sin ± = 1 ± (1 − y ) 2 , e f : quark charge, v i / a i : EW couplings Y F L = F 2 − 2 x F 1 ( → 0 in LO QCD, longitudinal Str. Function) kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 6

  7. Results of F 2 Structure Function HERA F 2 2 Q 2 =2.7 GeV 2 3.5 GeV 2 4.5 GeV 2 6.5 GeV 2 • Strong rise of F 2 as x decreases 1 Soft ‘ sea ’ of quarks in the proton – 0 2 8.5 GeV 2 10 GeV 2 12 GeV 2 15 GeV 2 2 ↑ • Slope of rise gets steeper as Q 1 0 2 18 GeV 2 22 GeV 2 27 GeV 2 35 GeV 2 softer parton smaller resol. em F 2 1 dynamics of quarks and gluons 0 2 45 GeV 2 60 GeV 2 70 GeV 2 90 GeV 2 1 Good agreement with fixed-target • 0 2 -3 -3 120 GeV 2 150 GeV 2 10 1 10 1 experiments at middle - high x ZEUS NLO QCD fit 1 H1 PDF 2000 fit H1 96/97 BCDMS (sea + valence quarks) ZEUS 96/97 E665 0 NMC -3 -3 10 1 10 1 x kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 7

  8. 2 F 2 for fixed x , as a function of Q HERA F 2 -log 10 (x) x=6.32E-5 x=0.000102 ZEUS NLO QCD fit x=0.000161 x=0.000253 H1 PDF 2000 fit • At low x , strong scaling violation x=0.0004 em x=0.0005 F 2 5 H1 94-00 x=0.000632 x=0.0008 is seen. H1 (prel.) 99/00 x=0.0013 ZEUS 96/97 g → qq BCDMS Large gluon density + splitting x=0.0021 E665 4 → F 2 increases x=0.0032 NMC x=0.005 • At x ~ 0.1, approximate scaling. x=0.008 3 2 ↑ . • At higher x , F 2 decreases as Q x=0.013 x=0.021 x=0.032 2 x=0.05 • Line = result of QCD fit (next slide) x=0.08 – All data points well described. x=0.13 x=0.18 1 x=0.25 x=0.4 x=0.65 0 2 3 4 5 1 10 10 10 10 10 Q 2 (GeV 2 ) kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 8

  9. Perturbative-QCD fit of F 2 data • Example: ZEUS NLO DGLAP analysis PRD 67 (2003) 012007 2 = Q 2 – At Q 0 , input functional form of PDF ( Q 2 2 ) 0 =7GeV p2 (1-x) p3 (1+p 5 x) for u-valence, d-valence, sea quarks and gluons • xf(x) = p 1 x 2 evolution’ is predicted by – ‘ Q DGLAP (‘Altarelli-Parisi’) Equations 2 = ( α s /2 ʞ ) ʈ f j ⊗ P ij • Ż f i / Ż ln Q P qq P gq P qg P gg – Use world’s precision DIS data + ZEUS F 2 • BCDMS, NMC, E665, CCFR ( µ -p, µ -D, ν -Fe) 2 fit to determine p 1 … p 5 – χ kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 9

  10. PDFs obtained from the fits ZEUS 0.8 1 xf xf(x,Q 2 ) Q 2 =10 GeV 2 ZEUS NLO QCD fit H1 H1 PDF 2000 0.7 2 ) = 0.118 0.9 α s (M Z Q 2 =10 GeV 2 xu v tot. error ZEUS-S PDF ZEUS-S PDF 0.8 0.6 CTEQ 6M xu V 0.7 0.5 MRST2001 0.6 0.4 xg( × 0.05) xg( × 0.05) 0.5 xd v 0.3 0.4 xd V xS( × 0.05) 0.3 0.2 xS( × 0.05) 0.2 0.1 0.1 0 0 -3 -2 -1 -4 -3 -2 -1 10 10 10 1 10 10 10 10 x x (H1 PDF 2000: uses only H1 data) kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 10

  11. Low-x sea and gluon distributions ZEUS 2 ~ 1GeV 2 , gluon becomes valence- • At Q 6 Q 2 =1 GeV 2 2.5 GeV 2 like (and even tends to be negative) ZEUS NLO QCD fit 4 xg xS • Sea quark is still rising 2 ZEUS xS xg 0 (a) xg -2 x=0.001 20 7 GeV 2 20 GeV 2 x=0.0001 20 tot. error tot. error ( α s free) ( α s fixed) uncorr. error xf ( α s fixed) 15 10 ZEUS NLO QCD fit xg xg tot. error ( α s -free) xS xS tot. error ( α s -fixed) 0 10 200 GeV 2 2000 GeV 2 30 x=0.01 “scaling 5 20 violation” xg xg 10 x=0.1 of gluon xS xS 0 0 -4 -3 -2 -1 -4 -3 -2 -1 10 10 10 10 1 10 10 10 10 1 x 2 3 4 1 10 10 10 10 kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 11 Q 2 (GeV 2 )

  12. 2 NC cross section Results on high- Q ZEUS 4 xQ 2 • σ ≡ at low Q ˜ + σ ( x , Q ) ≈ F 2 1.5 Q 2 =200 GeV 2 250 GeV 2 350 GeV 2 450 GeV 2 2 2 2 πα Y 1 2 > ~5000 GeV 2 , effect of At Q 0.5 Z -exchange clearly visible. 0 − p) > σ (e + p) due to ± x F 3 • σ (e 650 GeV 2 800 GeV 2 1200 GeV 2 1500 GeV 2 1 2 2 3 ∝ q ( x , Q ) − q ( x , Q xF ) 0.75 sensitive to valence quarks 0.5 0.25 H1 94-00 ZEUS 96-99 SM (CTEQ6D) NC 0.6 ∼ 0 xF 3 σ Q 2 = 1500 GeV 2 Q 2 = 3000 GeV 2 Q 2 = 5000 GeV 2 2000 GeV 2 3000 GeV 2 5000 GeV 2 8000 GeV 2 0.4 0.8 0.2 0.6 0 0.4 -0.2 0.2 0 0.4 Q 2 = 8000 GeV 2 Q 2 = 12000 GeV 2 Q 2 = 30000 GeV 2 -2 12000 GeV 2 20000 GeV 2 30000 GeV 2 10 1 0.6 0.2 ZEUS NLO QCD fit 0.4 tot. error 0 0.2 ZEUS NC e - p 98/99 -1 -1 -1 ZEUS NC e + p 10 10 10 0 96/97 -2 -2 -2 10 1 10 1 10 1 x x kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 12

  13. “Rutherford experiment” on quarks 2 • Single differential xsec in Q 2 = large angle = smaller distance Large Q HERA Neutral Current d σ /dQ 2 (pb/GeV 2 ) 4 fall over 7 orders of magnitude • 1/ Q H1 e - p 10 ZEUS e - p 98-99 • Analogy to nucleon form factor: SM e - p (CTEQ6D) 1 If finite ‘quark radius’ R q , xsec will -1 10 2 grows. decrease as Q -2 σ = σ SM (1 − < R q 2 > Q 2 /6) 2 10 -3 R q < 0.85 × 10 -16 cm 10 H1 e + p 94-00 -4 ZEUS (prel.) e + p 99-00 10 ZEUS SM e + p (CTEQ6D) N/N CTEQ5D -5 ZEUS 94-00 e ± p 1.2 10 10 2 = (0.85 ⋅ 10 -16 cm) 2 R q 1.1 -6 1 2 = -(1.06 ⋅ 10 -16 cm) 2 R q 10 0.9 y < 0.9 0.8 -7 3 4 10 10 10 3 4 10 10 Q 2 (GeV 2 ) 1 ↓ ↓ - Quark Radius Limits h/ Q = 0.02fm 0.002fm 3 4 10 10 Q 2 (GeV 2 ) kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 13

  14. Charged current − flavour sensitive HERA Charged Current + p: only negative-charge quarks • e H1 e - p H1 e + p 94-00 SM e - p (CTEQ6D) ZEUS e - p 98-99 ZEUS e + p 99-00 SM e + p (CTEQ6D) 2 2 σ   d 2 G M [ ] + e p 2 = F W u + c + ( 1 − y ) ( d + s ) σ   ∼ Q 2 = 280 GeV 2 Q 2 = 530 GeV 2 Q 2 = 950 GeV 2 2 2 2 2 π + Q dxdQ M   2 W 2 ) probed. At high x , mainly d( x , Q 1 − p: only positive-charge quarks • e 2 2 σ   d 2 G M [ ] − Q 2 = 1700 GeV 2 Q 2 = 3000 GeV 2 Q 2 = 5300 GeV 2 e p 2 = F W u + c + ( 1 − y ) ( d + s )   2 2 2 2 π + Q dxdQ M 1   W At high x , mainly u( x , Q 2 ) probed. 0.5 1 2 ) > d( x , Q 2 ), • In addition to u( x , Q Q 2 = 9500 GeV 2 Q 2 = 17000 GeV 2 Q 2 = 30000 GeV 2 0.75 2 in e + p helicity suppression (1- y ) x · u (1-y) 2 x · d 0.5 − p) >> σ (e + p) at high Q 2 ⇒ σ (e 0.25 -2 -1 -2 -1 -2 -1 10 10 10 10 10 10 • Data (not used in the fit) well described x − 1   2   2 by the QCD prediction. G M   2 σ ≡ σ ( x , Q ˜ F W   ) 2 2 2 π x + Q   M     W kuze@phys.titech.ac.jp 20/Feb/2004 SQS04 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend