pricing of cross currency interest rate derivatives on
play

Pricing of cross-currency interest rate derivatives on Graphics - PowerPoint PPT Presentation

Pricing of cross-currency interest rate derivatives on Graphics Processing Units Duy Minh Dang Department of Computer Science University of Toronto Toronto, Canada dmdang@cs.toronto.edu Joint work with Christina Christara and Ken Jackson


  1. Pricing of cross-currency interest rate derivatives on Graphics Processing Units Duy Minh Dang Department of Computer Science University of Toronto Toronto, Canada dmdang@cs.toronto.edu Joint work with Christina Christara and Ken Jackson Workshop on Parallel and Distributed Computing in Finance IEEE International Parallel & Distributed Processing Symposium Atlanta, USA, April 19 – 23, 2010 1 / 18

  2. Outline Power Reverse Dual Currency (PRDC) swaps 1 The model and the associated PDE 2 GPU-based parallel numerical methods 3 Numerical results 4 Summary and future work 5 2 / 18

  3. Power Reverse Dual Currency (PRDC) swaps PRDC swaps • Long-dated swaps ( ≥ 30 years) • Two currencies: domestic and foreign (unit zero-coupon bond prices P d and P f ) • PRDC coupons in exchange for domestic LIBOR payments ( funding leg ) • Two parties: the issuer (pays PRDC coupons) and the investor (pays LIBOR) • PRDC coupon and LIBOR rates are applied on the domestic currency principal N d Tenor structure: T 0 < T 1 < . . . < T β − 1 < T β , ν α ≡ ν ( T α − 1 , T α ) = T α − T α − 1 At each of the times T α , α = 1 , . . . , β − 1, the issuer 1 − P d ( T α − 1 , T α ) • receives ν α N d L d ( T α − 1 , T α ), where L d ( T α − 1 , T α ) = ν ( T α − 1 , T α ) P d ( T α − 1 , T α ) • pays PRDC coupon amount ν α N d C α , where the coupon rate C α has the structure � � � � c f s ( T α ) C α = min max − c d , b f , b c f α ◦ s ( T α ) : the spot FX-rate at time T α ◦ f α : scaling factor, usually is set to the forward FX rate F (0 , T α ) = P f (0 , T α ) P d (0 , T α ) s (0) ◦ c d , c f : domestic and foreign coupon rates; b f , b c : a cap and a floor • In the standard case ( b f = 0 and b c = ∞ ), C α is a call option on the spot FX rate h α = c f f α , k α = f α c d C α = h α max( s ( T α ) − k α , 0) , c f 3 / 18

  4. Power Reverse Dual Currency (PRDC) swaps Bermudan cancelable PRDC swaps The issuer has the right to cancel the underlying swap at any of the times { T α } β − 1 α =1 after the occurrence of any exchange of fund flows scheduled on that date. • Observation: terminating a swap at T α is the same as i. continuing the underlying swap, and ii. entering into the offsetting swap at T α ⇒ the issuer has a long position in an associated offsetting Bermudan swaption • Pricing framework: dividing the pricing of a Bermudan cancelable PRDC swap into i. the pricing of the underlying PRDC swap (a “vanilla” PRDC swap), and ii. the pricing of the associated offsetting Bermudan swaption • Notations ◦ u c α ( t ) and u f α ( t ): value at time t of the coupon and the LIBOR part scheduled after T α , respectively ◦ u h α ( t ): value at time t of the offsetting Bermudan swaption that has only the dates { T α +1 , . . . , T β − 1 } as exercise opportunities ◦ u e α ( t ): value at time t of all fund flows in the offsetting swap scheduled after T α ◦ u h β − 1 ( T β − 1 ) = u e β − 1 ( T β − 1 ) = 0 ◦ Note: u h α ( T α ) is the “hold value” and u e α ( T α ) is the “exercise value” of the option at time T α 4 / 18

  5. b b b b b b b b b Power Reverse Dual Currency (PRDC) swaps Backward pricing algorithm T 0 T 1 T β − 3 T β − 2 T β − 1 T β 5 / 18

  6. b b b b b b b b b Power Reverse Dual Currency (PRDC) swaps Backward pricing algorithm T 0 T 1 T β − 3 T β − 2 T β − 1 T β solve PDE uc β − 2( T β − 2) − Nd C β − 1 GPU 1 uh β − 2( T β − 2) 0 GPU 2 solve PDE 5 / 18

  7. b b b b b b b b b Power Reverse Dual Currency (PRDC) swaps Backward pricing algorithm T 0 T 1 T β − 3 T β − 2 T β − 1 T β solve PDE uc β − 2( T β − 2) − Nd C β − 1 GPU 1 uh β − 2( T β − 2) 0 GPU 2 solve PDE solve PDE uc − Nd C β − 2 + uc β − 3( T β − 3) β − 2( T β − 2) GPU 1 � � uh ue , uh β − 3( T β − 3) max β − 2( T β − 2) β − 2( T β − 2) GPU 2 � �� � solve PDE � � uc β − 2( T β − 2)+ uf β − 2( T β − 2) − 5 / 18

  8. b b b b b b b b b b b b b b b Power Reverse Dual Currency (PRDC) swaps Backward pricing algorithm T 0 T 1 T β − 3 T β − 2 T β − 1 T β solve PDE uc β − 2( T β − 2) − Nd C β − 1 GPU 1 uh β − 2( T β − 2) 0 GPU 2 solve PDE solve PDE uc − Nd C β − 2 + uc β − 3( T β − 3) β − 2( T β − 2) GPU 1 � � uh ue , uh β − 3( T β − 3) max β − 2( T β − 2) β − 2( T β − 2) GPU 2 � �� � solve PDE � � uc β − 2( T β − 2)+ uf β − 2( T β − 2) − 5 / 18

  9. b b b b b b b b b b b b b b b Power Reverse Dual Currency (PRDC) swaps Backward pricing algorithm T 0 T 1 T β − 3 T β − 2 T β − 1 T β solve PDE uc β − 2( T β − 2) − Nd C β − 1 GPU 1 uh β − 2( T β − 2) 0 GPU 2 solve PDE solve PDE uc − Nd C β − 2 + uc β − 3( T β − 3) β − 2( T β − 2) GPU 1 � � uh ue , uh β − 3( T β − 3) max β − 2( T β − 2) β − 2( T β − 2) GPU 2 � �� � solve PDE � � uc β − 2( T β − 2)+ uf β − 2( T β − 2) − solve PDE uc − Nd C 1 + uc 0( T 0) 2 ( T 1) GPU 1 � � ue uh , uh 0 ( T 0) max 1( T 1) 1 ( T 1) GPU 2 � �� � solve PDE � � uc 2 ( T 2)+ uf 2( T 2) − • u f α ( T α ): obtained by the “fixed notional” method, not by solving a PDE • Price of the underlying PRDC swap: u f 0 ( T 0 ) + u c 0 ( T 0 ) • Price of the Bermudan cancelable PRDC swap: ( u f 0 ( T 0 ) + u c 0 ( T 0 )) + u h 0 ( T 0 ) 5 / 18

  10. The model and the associated PDE The pricing model Consider the following model under domestic risk neutral measure ds ( t ) s ( t ) =( r d ( t ) − r f ( t )) dt + γ ( t , s ( t )) dW s ( t ) , dr d ( t )=( θ d ( t ) − κ d ( t ) r d ( t )) dt + σ d ( t ) dW d ( t ) , dr f ( t )=( θ f ( t ) − κ f ( t ) r f ( t ) − ρ fs ( t ) σ f ( t ) γ ( t , s ( t ))) dt + σ f ( t ) dW f ( t ) , • r i ( t ) , i = d , f : domestic and foreign interest rates with mean reversion rate and volatility functions κ i ( t ) and σ i ( t ) • s ( t ): the spot FX rate (units domestic currency per one unit foreign currency) • W d ( t ) , W f ( t ) , and W s ( t ) are correlated Brownian motions with dW d ( t ) dW s ( t ) = ρ ds dt , dW f ( t ) dW s ( t ) = ρ fs dt , dW d ( t ) dW f ( t ) = ρ df dt � s ( t ) � ς ( t ) − 1 • Local volatility function γ ( t , s ( t )) = ξ ( t ) L ( t ) - ξ ( t ): relative volatility function - ς ( t ): constant elasticity of variance (CEV) parameter - L ( t ): scaling constant (e.g. the forward FX rate F (0 , t )) 6 / 18

  11. The model and the associated PDE The 3-D pricing PDE Let u = u ( s , r d , r f , t ) be the value of a security at time t , with a terminal payoff measurable with respect to the σ -algebra at maturity time T end and without intermediate payments. On R 3 + × [ T start , T end ), u satisfies the PDE ∂ u ∂ t + L u ≡ ∂ u ∂ t +( r d − r f ) s ∂ u ∂ s � � ∂ u � � ∂ u + θ d ( t ) − κ d ( t ) r d + θ f ( t ) − κ f ( t ) r f − ρ fS σ f ( t ) γ ( t , s ( t )) ∂ r d ∂ r f 2 γ 2 ( t , s ( t )) s 2 ∂ 2 u d ( t ) ∂ 2 u f ( t ) ∂ 2 u + 1 ∂ s 2 + 1 + 1 2 σ 2 2 σ 2 ∂ r 2 ∂ r 2 d f + ρ dS σ d ( t ) γ ( t , s ( t )) s ∂ 2 u ∂ r d ∂ s + ρ fS σ f ( t ) γ ( t , s ( t )) s ∂ 2 u ∂ r f ∂ s + ρ df σ d ( t ) σ f ( t ) ∂ 2 u − r d u = 0 ∂ r d ∂ r f • Derivation: Multi-dimensional Itˆ o’s formula • Boundary conditions: Dirichlet-type “stopped process” boundary conditions • Backward PDE: the change of variable τ = T end − t • Difficulties: High-dimensionality, cross-derivative terms 7 / 18

  12. GPU-based parallel numerical methods Discretization • Space: Second-order central finite differences on uniform mesh • Time: ADI technique based on Hundsdorfer and Verwer (HV) approach ◦ u m : the vector of approximate values ◦ A m 0 : matrix of all mixed derivatives terms; A m i , i = 1 , . . . , 3: matrices of the second-order spatial derivative in the s -, r d -, and r s - directions, respectively ◦ g m i , i = 0 , . . . , 3 : vectors obtained from the boundary conditions ◦ A m = � 3 i ; g m = � 3 i =0 A m i =0 g m i Timestepping HV scheme from time t m − 1 to t m : Phase 1: v 0 = u m − 1 + ∆ τ ( A m − 1 u m − 1 + g m − 1 ) , ( I − 1 v i = v i − 1 − 1 u m − 1 + 1 2∆ τ A m 2∆ τ A m − 1 2∆ τ ( g m i − g m − 1 i ) ) , i = 1 , 2 , 3 , i i � �� � � �� � A m � � v i i Phase 2: v 0 = v 0 + 1 2∆ τ ( A m v 3 − A m − 1 u m − 1 ) + 1 2∆ τ ( g m − g m − 1 ) , � ( I − 1 v i − 1 − 1 2∆ τ A m 2∆ τ A m i ) � v i = � i v 3 , i = 1 , 2 , 3 , u m = � v 3 . 8 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend