precision multiboson phenomenology status and prospects
play

Precision Multiboson Phenomenology: Status and Prospects Michael - PowerPoint PPT Presentation

Precision Multiboson Phenomenology: Status and Prospects Michael Rauch | SM@LHC 2015, Apr 2015 I NSTITUTE FOR T HEORETICAL P HYSICS KIT University of the State of Baden-Wuerttemberg and www.kit.edu National Research Center of the Helmholtz


  1. Precision Multiboson Phenomenology: Status and Prospects Michael Rauch | SM@LHC 2015, Apr 2015 I NSTITUTE FOR T HEORETICAL P HYSICS KIT – University of the State of Baden-Wuerttemberg and www.kit.edu National Research Center of the Helmholtz Association

  2. Outline Vector-Boson Fusion ( Vjj ) / Vector-Boson Scattering ( VVjj ) Triboson Production ( VVV ) SM@LHC 2015, Apr 2015 2/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  3. VBF event topology VBF (vector-boson fusion) topology shows distinct signature two tagging jets in forward region reduced jet activity in central region leptonic decay products typically between tagging jets → two-sided DIS First studied in context of Higgs searches [Han, Valencia, Willenbrock; Figy, Oleari, Zeppenfeld; . . . ] ∼ 10 % compared to main production mode gluon fusion NLO QCD corrections moderate ( O ( � 10 %)) NLO EW same size, opposite sign as QCD for M H ∼ 126 GeV [Ciccolini et al. , Figy et al. ] NNLO QCD known for subsets: no significant contributions [Harlander et al. , Bolzoni et al. ] advantageous scale choice: momentum transfer q 2 of intermediate vector bosons SM@LHC 2015, Apr 2015 3/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  4. Diboson-VBF production ager, Oleari, Zeppenfeld (VV); Campanario, Kaiser, Zeppenfeld (W ± γ )] [Bozzi, J¨ [Denner, Hosekova, Kallweit (W + W + )] e + µ - ν e α Γ V ν e Part of the NLO wish list e + γ ,Z ν µ ν µ W + W - µ - [Les Houches 2005] u u u u γ ,Z γ ,Z background to Higgs searches c c c c access to triple and quartic gauge (a) (b) couplings µ - u u W - γ ,Z ν µ e + Available tools: u u αβ ν e W T VV ν µ VBFNLO c c [Zeppenfeld, MR et al.] ν e µ - γ ,Z W + NLO QCD, VBF approximation e + c c (c) (d) Phantom [Ballestrero et al.] LO, pp → 6 f µ - ν e W - W + e + ν µ automated tools, e.g. u u u u W + W - µ - ν e GoSam [Cullen et al.] αβ αβ T W + V T W - V e + ν µ MadGraph5 aMC@NLO γ ,Z γ ,Z c c c c [Artoisenet et al.] (e) (f) SM@LHC 2015, Apr 2015 4/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  5. Scale dependence Dependence on factorization and renormalization scale [Bozzi, J¨ ager, Oleari, Zeppenfeld] pp → W + Zjj pp → W + W − jj sizable scale dependence at LO: ∼ ± 10% strongly reduced at NLO: ∼ ± 2% (up to 6% in distributions) K-factor around 0.98 for µ = m V , 1.04 for µ = Q (momentum transfer) SM@LHC 2015, Apr 2015 5/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  6. Distributions Differential distributions: p T ( j ) (W + W − ) [J¨ ager, Oleari, Zeppenfeld] p T of the leading tagging jet K factor not constant over range of distribution → shape of distributions changes → simple rescaling with K factor not sufficient p T of the second tagging jet SM@LHC 2015, Apr 2015 6/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  7. Distributions Differential distributions: m jj (W + W + ) [J¨ ager, Oleari, Zeppenfeld] → scale choice µ 0 = Q leads to flatter differential K factor SM@LHC 2015, Apr 2015 7/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  8. QCD-Diboson production Most important background: QCD-Diboson Production All combinations available at NLO QCD: [Melia, Melnikov, R¨ ontsch, Zanderighi; Greiner, Heinrich, Mastrolia, Ossola, Reiter, Tramontano] [Campanario, Kerner, Ninh, Zeppenfeld; Gehrmann, Greiner, Heinrich] W + W − jj W + W − jj & W + W + jj (latter after changing quark flavors appropriately) + diagrams where quark line without attached vector bosons is replaced by gluons SM@LHC 2015, Apr 2015 8/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  9. QCD-Diboson production pp → e + ν e µ + ν µ [Campanario, Kerner, Ninh, Zeppenfeld] Impact of NLO QCD corrections K factors typically between 1 and 1.5 + + pp e jj+X → ν µ ν 10 e µ corrections < 20 % for s = 14TeV invariant mass of two leading jets LO [ fb/TeV ] NLO > 200 GeV ’ /2 µ 1 0 ’ µ huge correction for small m jj due 0 jj 2 ’ µ /dm 0 to new phase-space region σ d (almost collinear quark-gluon -1 10 splitting) good scale choice (interpolates -2 10 between different regions): 2 1.5 K 0 = 1 � � 1 µ ′ p T , i exp | y i − y 12 | 2 jets ) 2 ) 0 µ ’ µ ( σ ( σ 1 � � � p 2 T , i + m 2 + W , i 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 m [ TeV ] W jj ( y 12 = ( y 1 + y 2 ) / 2) SM@LHC 2015, Apr 2015 9/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  10. QCD-EW interference pp → e + ν e µ + ν µ [Campanario, Kerner, Ninh, Zeppenfeld] Comparing contributions at LO QCD and EW contributions of 1.6 similar size + + pp → e ν µ ν jj+X e µ 1.4 (destructive interference for QCD, 14TeV, Inc, LO full 1.2 no gluon-initiated contributions) EW+QCD EW 1 VBF QCD-EW interference largest for [fb] QCD tags 0.8 Int large p T , j , small ∆ y tags y ∆ /d 0.6 up to 20% reducing to 10% (3%) σ d for loose (tight) VBF cuts 0.4 0.2 VBF contribution by far dominant in VBF region (96%) 0 100 → good approximation 80 [%] 60 40 δ 20 0 0 1 2 3 4 5 6 7 Definition of VBF region: ∆ y tags m jj > 500 GeV EW: full O ( α 6 ) calculation ∆ y tags > 4 VBF: VBF approximation (only t-/u-channel diagrams) y j 1 × y j 2 < 0 SM@LHC 2015, Apr 2015 10/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  11. Matching with parton shower NLO calculation LO + parton shower normalization correct to NLO LO normalization only additional jet at high- p T further high- p T jets badly accurately described described theoretical uncertainty reduced Sudakov suppression at small p T low- p T jet emission badly events at hadron level possible modeled parton level description ⇒ combine both approaches → NLO + parton shower POWHEG-BOX [Alioli, Hamilton, Nason, Oleari, Re] currently available VBF implementations: Z [J¨ ager, Schneider, Zanderighi] W ± , Z [Schissler, Zeppenfeld] W ± W ± , W ± W ∓ [J¨ ager, Zanderighi] ZZ [J¨ ager, Karlberg, Zanderighi] SM@LHC 2015, Apr 2015 11/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  12. Matching with parton shower W + via VBF (similar results for W − and Z ) [Schissler, Zeppenfeld] p T , j > 30 (tag), 20 GeV, R = 0 . 5, m tag > 600 GeV, y tag j , min − 0 . 2 < y ℓ < y tag j , max + 0 . 2 jj y j 1 + y j 2 Relative position of third jet with respect to the two tagging jets: y ⋆ = y j 3 − 2 Comparison of three different showers: Pythia, Herwig++-Default, Herwig++-Dipole low- p T region: damping due to Sudakov factor hard 3rd jet � 75 GeV: lower rates than NLO from additional hard/wide-angle radiation y ⋆ : relevant differences between shower algorithms SM@LHC 2015, Apr 2015 12/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  13. Matching with parton shower W + via VBF [Schissler, Zeppenfeld] y j 1 + y j 2 Relative position of third jet with respect to the two tagging jets: y ⋆ = y j 3 − 2 Typical | y tag | ≃ 2 . 7 → | y ⋆ | < 2 . 7 corresponds to rapidity gap j Pythia: more radiation inside rapidity gap than NLO ↔ Herwig++ (both showers): less even more pronounced when lowering p T , j 3 cut to 10 GeV origin: more soft partons predicted by Pythia, mostly collinear radiation by Herwig++ Even bigger differences for additional jets generated solely by parton shower → Uncertainty of prediction SM@LHC 2015, Apr 2015 13/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  14. Triboson production e.g. pp → W + Z γ → ℓ + 1 ν 1 ℓ + 2 ℓ − 2 γ q ν e q γ q W + W + Z/γ ∗ µ − e + ν e µ + W + γ e + Z/γ ∗ µ − Z/γ ∗ µ − W + γ µ + µ + ν e q ′ q ′ q ′ ¯ ¯ ¯ W + e + ν e background to new-physics searches W + q e + → signature: multilepton W + γ + possibly missing E T gives access to triple and quartic gauge µ − q ′ ¯ Z/γ ∗ couplings (e.g. WWWW , WW γγ ) µ + processes with all bosons massive contain intermediate Higgs → background to VH , H → VV SM@LHC 2015, Apr 2015 14/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

  15. Triboson production All combinations V ∈{ W ± , Z , γ } at NLO QCD discussed in literature: ZZZ production (no leptonic decays, no Higgs contribution) [Lazopoulos, Melnikov, Petriello] W + W − Z production [Hankele, Zeppenfeld] ZZZ , W + W − Z , ZZW ± , W ± W ∓ W ± (no leptonic decays, no Higgs contributions) [Binoth, Ossola, Papadopoulos, Pittau] ZZW ± , W ± W ∓ W ± [Campanario, Hankele, Oleari, Prestel, Zeppenfeld] ZZZ W + W − γ , ZZ γ [Bozzi, Campanario, Hankele, Zeppenfeld] W ± Z γ [Bozzi, Campanario, MR, Rzehak, Zeppenfeld] W ± γγ production (no leptonic decays, including CKM and fragmentation) [Baur, Wackeroth, Weber] W ± γγ [Bozzi, Campanario, MR, Zeppenfeld] Z γγ , γγγ [Bozzi, Campanario, MR, Zeppenfeld] W + W − Z (no leptonic decays, NLO QCD+EW) [Nhung, Ninh, Weber] VBFNLO approximations: [Zeppenfeld, MR, et al.] fermion mass effects neglected, CKM matrix effects neglected Interference terms due to identical particles in the final state neglected SM@LHC 2015, Apr 2015 15/21 M. Rauch – Precision Multiboson Phenomenology: Status and Prospects

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend