precision phenomenology exploring the higgs sector and
play

Precision Phenomenology: Exploring the Higgs Sector and Beyond - PowerPoint PPT Presentation

18 December 2017 MPP Project Review 2017, Munich Precision Phenomenology: Exploring the Higgs Sector and Beyond Stephen Jones for the MPP Phenomenology Group Group Goals What we do: Take or develop well motivated mathematical models


  1. 18 December 2017 MPP Project Review 2017, Munich Precision Phenomenology: Exploring the Higgs Sector and Beyond Stephen Jones for the MPP Phenomenology Group

  2. Group Goals What we do: • Take or develop well motivated mathematical models (Standard Model, SUSY Theories, Effective Field Theories,...) • Produce precise, concrete predictions for high energy colliders (LHC, ILC, FCC, ...) How we do it: • Establish a mathematical understanding of the theory • Develop and use state of the art computational tools and techniques Why we do it: • With our experimental colleagues, we want to test and refine our understanding of the fundamental forces • E.g: Probing the nature of Electro-weak symmetry breaking, constraining the solution space for new fundamental particles and interactions 2

  3. MPP Phenomenology Group Director: Wolfgang Hollik Staff Members: Thomas Hahn, Gudrun Heinrich Postdoctoral Researchers: Stephen Jones, Matthias Kerner, Gionata Luisoni (short-term) Finishing this year: Joao Pires (Technical Institute of the University of Lisbon) Welcome: Long Chen PhD Students : Henning Bahl, Stephan Hessenberger, Stephan Jahn, Viktor Papara, Cyril Pietsch, Ludovic Scyboz (partial member) Welcome: Matteo Capozi 3

  4. Project Highlights Part 1: Calculations Triple Higgs coupling effect on h 0 → bb and h 0 → τ + τ − in the 2HDM [A. Arhrib, R. Benbrik, J. El Falaki, W. Hollik] ZA production in vector-boson scattering at NLO QCD [F. Campanario, M. Kerner, D. Zeppenfeld] NNLO predictions for Z-boson pair production at the LHC [G. Heinrich, S. Jahn, SJ, M. Kerner, J. Pires] NNLO QCD predictions for single jet inclusive production at the LHC [J. Currie, E.W.N. Glover, J. Pires] Part 2: Precision studies NLO and off-shell effects in top quark mass determinations [G.Heinrich, A.Maier, R.Nisius, J.Schlenk, M.Schulze, L.Scyboz, J.Winter] NLO predictions for Higgs boson pair production matched to parton showers [G. Heinrich, SJ, M. Kerner, G. Luisoni, E. Vryonidou] Parton Shower and NLO-Matching uncertainties in Higgs Boson Pair Production [SJ, S.Kuttimalai] Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass [H. Bahl, T. Hahn, S. Heinemeyer, W. Hollik, G. Weiglein] Part 3: Tools pySecDec: a toolbox for the numerical evaluation of multi-scale integrals [S. Borowka, G. Heinrich, S. Jahn, SJ, M. Kerner, J. Schlenk, T. Zirke] Loopedia: a Database for Loop Integrals [C. Bogner, S. Borowka, T. Hahn, G. Heinrich, SJ, M. Kerner, A. von Manteuffel, M. Michel, E. Panzer, V. Papara] 4

  5. Part 1: Calculations 5

  6. 1) NLO QCD Vector Boson Scattering [ F. Campanario, M. Kerner, D. Zeppenfeld ] EW production (VBS) QCD production e − e − Z/ γ e − Z/ γ W W Z/ γ /W e − Z/ γ e + e + e + W W e + γ γ γ Z/ γ /W γ W W sensitivity to triple/quartic gauge couplings 
 → important test of EW symmetry breaking mechanism 10 − 2 2.5 NLO QCD EW LO EW LO EW NLO EW NLO 2.0 QCD NLO QCD NLO d σ / d m jj [fb / GeV] corrections: d σ / d ∆ y jj [fb] 1.5 10 − 3 significant 1.0 reduction of 0.5 10 − 4 scale 1.12 1.12 K-factor K-factor 1.04 1.04 uncertainty 0.96 0.96 0.88 0.88 0.80 0.80 500 1000 1500 2000 2500 3000 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 ∆ y jj m jj [GeV] 6

  7. effects of modified gauge couplings investigated using EFT approach e.g. dimension-8 operator B µ ⌫ = ig 0 B µ ⌫ b O T, 8 = b B µ ⌫ b B ↵� b B ↵� b (with U Y (1) gauge field, ) 2 B µ ⌫ anomalous gauge couplings lead to unitarity violation for large s = m 2 Z γ Unitarity restored by: • higher-dimensional operators in UV-complete models • form factors in model-independent approach • commonly used form factor: f T 8 = 1200 TeV − 4 f T 8 = 600 TeV − 4 SM EW 10 − 2 dipole form factor no unitarization (dotted lines) d σ / d m Z γ [fb / GeV] 10 − 3 ◆ − 2 ✓ s F ( s ) = 1 + . Λ 2 F F • new, modified form factor 
 10 − 4 (dashed lines) nearly no 
 ◆ − 1 s 2 ✓ suppression 
 10 − 5 F c ( s ) = 1 − i 4 Λ c with modified FF F F leads to smaller suppression 
 10 − 6 without violating unitarity 0 500 1000 1500 2000 2500 3000 3500 4000 m Z γ [GeV] 7

  8. 2) NNLO Z-boson pair production [G. Heinrich, S. Jahn, SJ, M. Kerner, J. Pires] Computed NNLO QCD ZZ production using the "N-Jettiness" method NNLO calculations consists of several separately divergent pieces NNLO contributions perturbative order q Z 0 → qZZgg ¯ q tree-level VBFNLO [1] 0 → qZZQ ¯ Q ¯ q tree-level } q 00 ] 0 → qZZg ¯ q one-loop GOSAM [2] 0 → ggZZ one-loop QQVVAMP [3] 0 → q ¯ qZZ two-loop q 0 ¯ V Z [1] Baglio et al. 11, [2] Cullen 12,14 Fig: Gehrmann, von Manteuffel Tancredi 15 [3] Gehrmann, von Manteuffel Tancredi 15 T N-Jettiness: Z Z d Φ N |M V V | 2 + d Φ N +1 |M RV | 2 θ < X e Y ZZ n a · p k , e − Y ZZ n b · p k � T 0 = Q τ 0 = min σ NNLO = , 0 k Z Z Slice phase space into regions based d Φ N +2 |M RR | 2 θ < d Φ N +1 |M RV | 2 θ > + 0 + 0 based on , for small soft/collinear T 0 T 0 Z d Φ N +2 |M RR | 2 θ > + 0 emissions can be approximated using ≡ σ NNLO ( T 0 < T cut ) + σ NNLO ( T 0 > T cut ) . 0 0 SCET. Limit gives full result. T cut → 0 0 8

  9. σ LO [pb] σ NLO [pb] σ NNLO [pb] 1.2 9 . 890 +4 . 9% 14 . 508 +3 . 0% 16 . 92 +3 . 2% Our Result − 6 . 1% − 2 . 4% − 2 . 6% pp ZZ + X s =13 TeV ( =m ) → µ Z 1.1 ATLAS [7] 17 . 3 ± 0 . 6(stat . ) ± 0 . 5(syst . ) ± 0 . 6(lumi . ) ( ∆ σ - gg)=0.833 ± 0.004 [pb] -gg) [pb] NNLO CMS [8] 17 . 2 ± 0 . 5(stat . ) ± 0 . 7(syst . ) ± 0 . 4(theo . ) ± 0 . 4(lumi . ) 1 NNLO √ NNLO corrections move theory σ 0.9 ∆ ( prediction towards ATLAS/CMS 0.8 measurements 0.7 3 2 1 2 − − − 10 10 10 10 1 10 cut [GeV] τ 0 pp ZZ + X s =13 TeV ( =m ) → µ Large part of the NNLO result Z LO comes from the opening up of the NLO 0.15 NLO+gg NNLO gluon channel [pb/GeV] 0.1 [pb] ZZ /m =0.5 µ 22 Z F /dm /m =1.0 µ σ Z F σ /m =2.0 µ d 20 Z F 0.05 18 NNLO NNLO w/o (gg → ZZ) 16 1.8 ratio to LO 14 1.6 1.4 NLO 1.2 12 1 ratio to NLO 200 250 300 350 m [GeV] 1.2 10 LO 1.1 8 1 0.9 0.2 0.5 2.0 4.0 8.0 200 250 300 350 1 m [GeV] /m µ ZZ Z R 9

  10. Part 2: Precision studies 10

  11. 1) Top quark mass determinations [G. Heinrich, A. Maier, R. Nisius, J. Schlenk, M. Schulze, L. Scyboz, J. Winter] • Compare different theory descriptions of top quark pair production • Assess impact on top quark mass determinations NLO LOdec NLO production ⊗ LO decay t ¯ t o NWA : narrow width approximation NLO production ⊗ NLO decay NLO NLOdec t ¯ t : NWA NLO production ⊗ decay via parton showering t ¯ NLO PS : t pp → W + W − b ¯ ν µ ) b ¯ b at NLO b → ( e + ν e ) ( µ − ¯ NLO full : contains e.g. non-factorising non-resonant 11

  12. Generate pseudo-data according to NLO full Use theory descriptions to calibrate template fit functions Determine off-set in top mass determination Offset with templates Offset − 1 . 52 ± 0 . 07 GeV with templates 0 . 83 ± 0 . 07 GeV based on NLO NLOdec based on LO W + W − b ¯ b NWA NLO corrections to decay more important than non-factorising/non-resonant contributions 12

  13. 2) NLO Higgs boson pair production + PS So far, measured Higgs couplings V t v m 1 ATLAS and CMS agree with the Standard Model Z V W LHC Run 1 κ or But: Higgs self coupling not yet well F 1 − 10 m v constrained F κ b SM Lagrangian: τ − 2 10 V ( Φ ) = 1 2 µ 2 Φ 2 + 1 ATLAS+CMS 4 λ Φ 4 L ⊃ − V ( Φ ) , SM Higgs boson 3 − 10 µ [M, ] fit ε EW sym. breaking 68% CL 95% CL 4 − 10 m 2 2 H 2 + m 2 2 v H 3 + m 2 H H 8 v 2 H 4 H 1 2 − 10 10 1 10 Particle mass [GeV] Higgs pair production probes triple-Higgs coupling 13

  14. Computed NLO QCD (2-loop) corrections to HH production (2016) [ S. Borowka, N. Greiner, G. Heinrich, SJ, M. Kerner, J. Schlenk, U. Schubert, T. Zirke ] Interfaced to 2 public Monte-Carlo codes ( POWHEG , MG5_aMC@NLO ) • assess impact of NLO matching schemes/parton shower Large for p hh • full result made available for use by LHC experiments T [ G. Heinrich, SJ, M. Kerner, G. Luisoni, E. Vryonidou ] NLO NLO T [pb/GeV] T [pb/GeV] 10 − 3 T [pb/GeV] T [pb/GeV] 10 − 4 NLO+PY8 POWHEG hdamp =250 10 − 4 Q sh = Q new MG5_aMC@NLO POWHEG def 10 − 5 10 − 5 d σ / d p hh d σ / d p hh d σ / d p h d σ / d p h 10 − 6 Full SM Full SM 10 − 6 LHC 14 TeV LHC 14 TeV PDF4LHC15 NLO hdamp=250 10 − 7 PDF4LHC15 NLO µ = m hh / 2 10 − 7 µ = m hh / 2 2.0 2.0 3.0 3.0 ratio ratio ratio ratio 2.0 2.0 1.0 1.0 1.0 1.0 0 0 100 100 200 200 300 300 400 400 500 500 600 600 700 700 0 0 100 100 200 200 300 300 400 400 500 500 600 600 p h T [GeV] p hh T [GeV] 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend