precision determination of v ub
play

Precision Determination of | V ub | Gil Paz Institute for Advanced - PowerPoint PPT Presentation

Precision Determination of | V ub | Gil Paz Institute for Advanced Study, Princeton Motivation 1.5 1.5 excluded at CL > 0.95 excluded area has CL > 0.95 3 m 1 1 d m & m sin2 s d 1 0.5 0.5


  1. Precision Determination of | V ub | Gil Paz Institute for Advanced Study, Princeton

  2. Motivation 1.5 1.5 excluded at CL > 0.95 excluded area has CL > 0.95 φ 3 ∆ m 1 1 d m & m ∆ ∆ sin2 φ s d 1 0.5 0.5 φ φ ε 2 2 K φ φ 0 0 3 η η 1 V /V ub cb -0.5 -0.5 ε K φ 2 -1 -1 CKM sol. w/ cos2 < 0 φ f i t t e r 1 (excl. at CL > 0.95) φ BEAUTY 2006 3 -1.5 -1.5 -1 -1 -0.5 -0.5 0 0 0.5 0.5 1 1 1.5 1.5 2 2 ρ ρ 2 σ “tension” between sin 2 φ 1 and | V ub | : (4 . 10 ± 0 . 09 ± 0 . 39) · 10 − 3 Measured | V ub | = (3 . 59 +0 . 17 − 0 . 18 ) · 10 − 3 Fit | V ub | = Inclusive | V ub | gives the smallest error How is | V ub | determined from ¯ B → X u l ¯ ν decays? CKM 2006: Precision Determination of | Vub | - Gil Paz 2

  3. Kinematics • Hadronic tensor W µν in ( v, n ) basis: (Lange, Neubert, GP [PRD 72, 073006 (2005)]): v = (1 , 0 , 0 , 0) n = (1 , 0 , 0 , 1) [¯ n = 2 v − n = (1 , 0 , 0 , − 1)] • Motivates: n · P = P − = E X + | � n · P = P + = E X − | � P l = M B − 2 E l , ¯ P X | , P X | • Exact triple rate: y = ( P − − P + ) / ( M B − P + ) = G 2 F | V ub | 2 d 3 Γ u � ( P − − P l )( M B − P − + P l − P + ) ˜ ( M B − P + ) W 1 16 π 3 dP + dP − dP l ˜ W 2 � y W 4 + 1 �� W 3 + ˜ ˜ ˜ +( M B − P − )( P − − P + ) + ( P − − P l )( P l − P + ) W 5 2 4 y M 2 π • Simplest phase space: P − ≤ P + ≤ P l ≤ P − ≤ M B • No explicit dependence on m b ! Can predict partial rates instead of fractions (Pedestrian introduction to inclusive | V ub | , chapter 1 of GP hep-ph/0607217) CKM 2006: Precision Determination of | Vub | - Gil Paz 3

  4. Kinematics 5 5 4 4 3 3 ✌ ✌ ☞ ☞ ☛ ☛ ✡ ✡ ✠ ✠ ✟ ✟ ✞ ✞ 2 2 1 1 0 0 0 0 1 1 2 2 3 3 4 4 5 5 ✂ ✂ ✝ ✝ � � ✄ ✄ ✆ ✆ ☎ ☎ ✁ ✁ q 2 = ( M B − P − )( M B − P + ) • P + P − = M 2 X • Experimental cuts ⇒ P + ∼ Λ QCD ∼ 0 . 5 GeV P − ∼ m b ∼ 5 GeV • In order to calculate d 3 Γ we need to know ˜ W i CKM 2006: Precision Determination of | Vub | - Gil Paz 4

  5. Dynamics - OPE region • If we had no charm background... Integrate over P + , P − up to M B , and use HQET based OPE � O 2 � � O 3 � ˜ W i ∼ c 0 � O 0 � + c 2 + c 3 + · · · m 2 m 3 b b • c i calculable in PT: – c 0 known at O ( α s ) (De-Fazio, Neubert ’99) – c 2 known at O ( α 0 s ) (Blok, Koyrakh, Shifman, Vainshtein ; Manohar, Wise ’93) – c 3 known at O ( α 0 s ) (Gremm, Kapustin ’96) – c 4 known at O ( α 0 s ) (Dassinger, Mannel, Turczyk ’06) • � O i � are HQ parameters, taken from experiment: � O 0 � = 1 – B ) 2 − ( M B ) 2 ] / 4 � O 2 � → µ 2 π , µ 2 – G = [( M ∗ � O 3 � → ρ 3 LS , ρ 3 – D • OPE works very well for ¯ B → X c l − ¯ ν ⇒ Error on | V cb | is 2%, know HQ parameters • Similar OPE for total ¯ B → X s γ rate (almost..), which we can’t measure. CKM 2006: Precision Determination of | Vub | - Gil Paz 5

  6. Dynamics - SF Region • Because of the charm background, forced into regions of phase space where HQET based OPE is not valid (”OPE breaks down”) • We do have a systematic 1 /m b expansion, calculated using SCET: 1 � ˜ h k u · j k u ⊗ s k W i ∼ H u · J ⊗ S + u + · · · m b k • H - physics at scale µ h ≥ m b - Calculable in PT J - physics at scale µ i ∼ � m b Λ QCD - Calculable in PT S - physics at scale µ 0 ∼ Λ QCD - Non perturbative function • For ¯ B → X s γ near endpoint: d Γ 1 � h k s · j k s ⊗ s k dE ∼ H s · J ⊗ S + s + · · · m b k CKM 2006: Precision Determination of | Vub | - Gil Paz 6

  7. Dynamics - SF Region • Currently: – H u known at O ( α s ) (Bauer, Manohar ’03; Bosch, Lange, Neubert, GP ’04) – H s known at O ( α s ) (Neubert ’04) – J known at O ( α 2 s ) (Becher, Neubert ’06) u known at O ( α 0 – h k u · j k s ) and s k u classified (K.S.M. Lee, Stewart ’04; Bosch, Neubert, GP ’04; Beneke, Campanario, Mannel, Pecjak ’04; Earlier partial studies) s known at O ( α 0 – Q 7 γ − Q 7 γ contribution: h k s · j k s ) and s k s classified (Loc. cit.) – The rest of s k s are being calculated (S.J. Lee, Neubert, GP in preparation) preliminary results in hep-ph/0609224 • Relation between the two regions: – Moments of SFs related to HQ parameters, e.g.: First moment of S ↔ m b , known at O ( α 2 s ) (Neubert ’04) Second moment of S ↔ µ 2 π , known at O ( α 2 s ) (Loc. cit.) ⇒ Good knowledge of HQ parameters, constrain the SFs – Integrate over large enough regions of phase space, recover OPE result CKM 2006: Precision Determination of | Vub | - Gil Paz 7

  8. BLNP Approach (2005): Principles • BLNP approach (Lange, Neubert, GP [PRD 72, 073006 (2005)]): Use all that we know (2005) about ¯ ν and ¯ B → X u l ¯ B → X s γ : – LO in 1 /m b : H u , H s , J at O ( α s ): � P + W (0) ˜ ω ) , µ i ) ˆ ( P + , y ) = U y ( µ h , µ i ) H u ( y, µ h ) d ˆ ω ym b J ( ym b ( P + − ˆ S (ˆ ω, µ i ) 1 0 – 1 /m b subleading SFs at O ( α 0 s ): ( P + , y ) = U y ( µ h , µ i ) t ( P + ) + (ˆ u ( P + ) − ˆ v ( P + ))(1 − y ) � � W hadr(1) ˜ ( P + − ¯ Λ) ˆ S ( P + ) + 2 ˆ 1 M B − P + y – Known 1 /m b · α s terms from OPE (convoluted with ˆ S ): � P + ( P + , y ) = U y ( µ h , µ i ) C F α s (¯ µ ) ω, µ i ) f ( P + − ˆ ω W kin(1) ˜ ω ˆ d ˆ S (ˆ , y ) 1 ( M B − P + ) 4 π M B − P + 0 b terms from OPE (convoluted with ˆ – Known 1 /m 2 S ): U y ( µ h , µ i ) � 4 λ 1 − 6 λ 2 − λ 1 + 3 λ 2 � W hadr(2) ˜ ˆ ( P + , y ) = S ( P + , µ i ) 1 ( M B − P + ) 2 3 y 2 3 CKM 2006: Precision Determination of | Vub | - Gil Paz 8

  9. BLNP Approach (2005): Principles • Similar expansion can be constructed for ¯ B → X s γ • Absorb the SSF into the LO SF without changing the moment expansion: ω ) + 2(¯ ω ) ˆ ω ) − ˆ Λ − ˆ S (ˆ t (ˆ ω ) + ˆ u (ˆ ω ) − ˆ v (ˆ ω ) ⇒ d Γ s ˆ ω ) ≡ ˆ = · · · ˆ S (ˆ S (ˆ S (ˆ ω, µ i ) m b dE γ • Extract ˆ S from ¯ B → X s γ and use as input for ¯ B → X u l − ¯ ν • Model subleading SFs using moment constraints • Subleading SFs: 3 functions, 9 models each, scan over 9 3 = 729 combinations 1 0.5 0 ☞ � 0.5 ☛ ✞ ✡ ✠ ✟ ✞ � 1 � 1.5 � 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 � ✂ ✄ ✆ ✝ ✁ ☎ • BLNP formalism smoothly and unambiguously interpolates between OPE and SF regions CKM 2006: Precision Determination of | Vub | - Gil Paz 9

  10. BLNP Approach (2005): Experimental Cuts • Lepton Energy endpoint: E l > 2 . 31 GeV Γ (0) Γ kin(1) Γ hadr(1) Γ kin(2) Γ hadr(2) + + + + u u u u u | V ub | 2 ps − 1 = 6 . 810 + 0 . 444 − 3 . 967 + 0 . 042 − 0 . 555 • P + spectrum: P + < ( M 2 D /M B ) ≈ 0 . 66 GeV Γ (0) Γ kin(1) Γ hadr(1) Γ kin(2) Γ hadr(2) + + + + u u u u u | V ub | 2 ps − 1 = 53 . 225 + 4 . 646 − 11 . 862 + 0 . 328 − 0 . 227 • M X spectrum: M X < M D ≈ 1 . 87 GeV Γ (0) Γ kin(1) Γ hadr(1) Γ kin(2) Γ hadr(2) + + + + u u u u u | V ub | 2 ps − 1 = 58 . 541 + 8 . 027 − 9 . 048 + 2 . 100 − 0 . 318 CKM 2006: Precision Determination of | Vub | - Gil Paz 10

  11. BLNP Approach (2005): Results • Error Analysis – LO SF taken from experiment – Perturbative error – SSF error by varying > 700 models – WA: take as fixed % of rate • Experimental implementation: – Belle: E l cut, M X cut, M X & q 2 cut, P + cut & E l cut, M X & q 2 cut, E l cut – BaBar: S max H • HFAG average (ICHEP 2006): | V ub | = (4 . 49 ± 0 . 19 ± 0 . 27) · 10 − 3 with – 4 . 2% HQ error – 3 . 8% Theory error (Perturbative + Subleading SFs) – 1 . 9% WA CKM 2006: Precision Determination of | Vub | - Gil Paz 11

  12. Improved | V ub | • Today! Eliminate WA error – Cut on high q 2 < q 2 max e.g. q 2 max = ( M B − M D ) 2 , combined with M X or P + cut (Lange, Neubert, GP ’05) – Loose efficiency but also the WA error and its uncertainty, Preliminary study gives smaller error with such a cut – Still waiting for experimental implementation! • Today! High precision weight functions – See talk by B.O. Lange (WG 2) – Still waiting for experimental implementation! • Future: – Q 7 γ for ¯ B → X s γ is known at O ( α 2 s ), other ops. are being calculated Once they are known, want ¯ ν at O ( α 2 B → X u l − ¯ s ): ”Only” need H u at O ( α 2 s ) ⇒ full 2 loop inclusive | V ub | – Subleading SFs at order O ( α s ) ⇔ OPE at O ( α s ) – Can we find a way to extract subleading SFs from data? – Complete subleading SF basis for ¯ B → X s γ : CKM 2006: Precision Determination of | Vub | - Gil Paz 12

  13. Complete SSF Basis for ¯ B → X s γ • Q 7 γ − Q 7 γ for ¯ B → X s γ and ¯ B → X u l − ¯ ν SSF: – 1 /m b correction for d Γ – SSF integrate to zero • Recent new result: α s · 1 /m b corrections to Γ( ¯ B → X s γ )! (Lee, Neubert, GP: hep-ph/0609224) • See talk by M. Neubert (WG 2/3/6 joint session) • What is the impact on inclusive | V ub | ? CKM 2006: Precision Determination of | Vub | - Gil Paz 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend