practical advances in complex root clustering
play

Practical Advances in Complex Root Clustering Collaborative and - PowerPoint PPT Presentation

Practical Advances in Complex Root Clustering Collaborative and ongoing works R. Imbach 1 , V. Pan 2 , M. Pouget 3 , C. Yap 1 1 Courant Institute of Mathematical Sciences, New York University, USA 2 Lehman College, City University of New York, USA


  1. Practical Advances in Complex Root Clustering Collaborative and ongoing works R. Imbach 1 , V. Pan 2 , M. Pouget 3 , C. Yap 1 1 Courant Institute of Mathematical Sciences, New York University, USA 2 Lehman College, City University of New York, USA 3 INRIA Nancy - Grand Est, France

  2. Introduction Triangular systems Univariate case 1/ 29 Example System: Let σ ≥ 3 and f ( z ) = 0 be: � ( z 1 − 2 − σ ) ( z 1 + 2 − σ ) = 0 ( z 2 + 2 σ z 2 1 ) ( z 2 − 1) z 2 = 0 Solutions: f ( z ) = 0 has 6 solutions, all real: a 1 = (2 − σ , 0) 1 a 2 = (2 − σ , 1) a 3 a 2 a 3 = ( − 2 − σ , 1) a 4 = ( − 2 − σ , 0) a 5 = ( − 2 − σ − 2 − σ ) , 2 − σ 2 − σ a 6 = (2 − σ − 2 − σ ) , a 4 a 1 2 − σ a 5 a 6 − 1 R. Imbach Seminar in Symbolic-Numeric Computing

  3. Introduction Triangular systems Univariate case 1/ 29 Example System: Let σ ≥ 3 and f ( z ) = 0 be: � ( z 1 − 2 − σ ) ( z 1 + 2 − σ ) = 0 ( z 2 + 2 σ z 2 1 ) ( z 2 − 1) z 2 = 0 Solutions: f ( z ) = 0 has 6 solutions, all real: a 1 = (2 − σ ∆ 2 ← m ( a 1 , f ) = 1 , 0) 1 a 2 = (2 − σ ← m ( a 2 , f ) = 1 , 1) a 3 a 2 a 3 = ( − 2 − σ ← m ( a 3 , f ) = 1 , 1) a 4 = ( − 2 − σ ← m ( a 4 , f ) = 1 , 0) a 5 = ( − 2 − σ − 2 − σ ) ← m ( a 5 , f ) = 1 , 2 − σ 2 − σ a 6 = (2 − σ − 2 − σ ) ← m ( a 6 , f ) = 1 , a 4 a 1 Natural clusters: 2 − σ ∆ 1 ( ∆ 1 , 4) ( ∆ 2 , 2) a 5 a 6 − 1 Notations: m ( a , f ): multiplicity of a as a sol. of f R. Imbach Seminar in Symbolic-Numeric Computing

  4. Introduction Triangular systems Univariate case 1/ 29 Example System: Let σ ≥ 3 and f ( z ) = 0 be: � ( z 1 − 2 − σ ) 2 ( z 1 + 2 − σ ) = 0 ( z 2 + 2 σ z 2 1 ) 2 ( z 2 − 1) z 2 = 0 Solutions: f ( z ) = 0 has 6 solutions, all real: a 1 = (2 − σ ∆ 2 ← m ( a 1 , f ) = 2 , 0) 1 a 2 = (2 − σ ← m ( a 2 , f ) = 2 , 1) a 3 a 2 a 3 = ( − 2 − σ ← m ( a 3 , f ) = 1 , 1) a 4 = ( − 2 − σ ← m ( a 4 , f ) = 1 , 0) a 5 = ( − 2 − σ − 2 − σ ) ← m ( a 5 , f ) = 2 , 2 − σ 2 − σ a 6 = (2 − σ − 2 − σ ) ← m ( a 6 , f ) = 4 , a 4 a 1 Natural clusters: 2 − σ ∆ 1 ( ∆ 1 , 9) ( ∆ 2 , 3) a 5 a 6 − 1 Notations: m ( a , f ): multiplicity of a as a sol. of f R. Imbach Seminar in Symbolic-Numeric Computing

  5. Introduction Triangular systems Univariate case 2/ 29 Local solution Clustering Problem (LCP) a polynomial map f : C n → C n (assume f ( z ) = 0 is 0-dim), Input: a polybox B ⊂ C n , the Region of Interest (RoI), ǫ > 0 Output: Notations: f = ( f 1 , . . . , f n ), B = ( B 1 , . . . , B n ) where the B i ’s are square complex boxes R. Imbach Seminar in Symbolic-Numeric Computing

  6. Introduction Triangular systems Univariate case 2/ 29 Local solution Clustering Problem (LCP) a polynomial map f : C n → C n (assume f ( z ) = 0 is 0-dim), Input: a polybox B ⊂ C n , the Region of Interest (RoI), ǫ > 0 Output: a set of pairs { ( ∆ 1 , m 1 ) , . . . , ( ∆ ℓ , m ℓ ) } where: • the ∆ j s are pairwise disjoint polydiscs of radius r ( ∆ j ) ≤ ǫ , Notations: f = ( f 1 , . . . , f n ), B = ( B 1 , . . . , B n ) where the B i ’s are square complex boxes ∆ j = (∆ j n ) where the ∆ j 1 , . . . , ∆ j i ’s are complex discs r (∆ j r ( ∆ j ) = max i ) i R. Imbach Seminar in Symbolic-Numeric Computing

  7. Introduction Triangular systems Univariate case 2/ 29 Local solution Clustering Problem (LCP) a polynomial map f : C n → C n (assume f ( z ) = 0 is 0-dim), Input: a polybox B ⊂ C n , the Region of Interest (RoI), ǫ > 0 Output: a set of pairs { ( ∆ 1 , m 1 ) , . . . , ( ∆ ℓ , m ℓ ) } where: • the ∆ j s are pairwise disjoint polydiscs of radius r ( ∆ j ) ≤ ǫ , • m j = #( ∆ j , f ) = #(3 ∆ j , f ) for all 1 ≤ j ≤ ℓ , and Notations: f = ( f 1 , . . . , f n ), B = ( B 1 , . . . , B n ) where the B i ’s are square complex boxes ∆ j = (∆ j n ) where the ∆ j 1 , . . . , ∆ j i ’s are complex discs r (∆ j r ( ∆ j ) = max i ) i #( S , f ): nb. of sols (with mult.) of f ( z ) = 0 in S R. Imbach Seminar in Symbolic-Numeric Computing

  8. Introduction Triangular systems Univariate case 2/ 29 Local solution Clustering Problem (LCP) a polynomial map f : C n → C n (assume f ( z ) = 0 is 0-dim), Input: a polybox B ⊂ C n , the Region of Interest (RoI), ǫ > 0 Output: a set of pairs { ( ∆ 1 , m 1 ) , . . . , ( ∆ ℓ , m ℓ ) } where: • the ∆ j s are pairwise disjoint polydiscs of radius r ( ∆ j ) ≤ ǫ , • m j = #( ∆ j , f ) = #(3 ∆ j , f ) for all 1 ≤ j ≤ ℓ , and • Z ( B , f ) ⊆ � ℓ j =1 Z ( ∆ j , f ) ⊆ Z ((1 + δ ) B , f ) for a small δ Notations: f = ( f 1 , . . . , f n ), B = ( B 1 , . . . , B n ) where the B i ’s are square complex boxes ∆ j = (∆ j n ) where the ∆ j 1 , . . . , ∆ j i ’s are complex discs r (∆ j r ( ∆ j ) = max i ) i #( S , f ): nb. of sols (with mult.) of f ( z ) = 0 in S Z ( S , f ): sols of f ( z ) = 0 in S R. Imbach Seminar in Symbolic-Numeric Computing

  9. Introduction Triangular systems Univariate case 2/ 29 Local solution Clustering Problem (LCP) a polynomial map f : C n → C n (assume f ( z ) = 0 is 0-dim), Input: a polybox B ⊂ C n , the Region of Interest (RoI), ǫ > 0 Output: a set of pairs { ( ∆ 1 , m 1 ) , . . . , ( ∆ ℓ , m ℓ ) } where: • the ∆ j s are pairwise disjoint polydiscs of radius r ( ∆ j ) ≤ ǫ , • m j = #( ∆ j , f ) = #(3 ∆ j , f ) for all 1 ≤ j ≤ ℓ , and • Z ( B , f ) ⊆ � ℓ j =1 Z ( ∆ j , f ) ⊆ Z ((1 + δ ) B , f ) for a small δ Notations: f = ( f 1 , . . . , f n ), B = ( B 1 , . . . , B n ) where the B i ’s are square complex boxes ∆ j = (∆ j n ) where the ∆ j 1 , . . . , ∆ j i ’s are complex discs r (∆ j r ( ∆ j ) = max i ) i #( S , f ): nb. of sols (with mult.) of f ( z ) = 0 in S Z ( S , f ): sols of f ( z ) = 0 in S R. Imbach Seminar in Symbolic-Numeric Computing

  10. Introduction Triangular systems Univariate case 2/ 29 Local solution Clustering Problem (LCP) a polynomial map f : C n → C n (assume f ( z ) = 0 is 0-dim), Input: a polybox B ⊂ C n , the Region of Interest (RoI), ǫ > 0 Output: a set of pairs { ( ∆ 1 , m 1 ) , . . . , ( ∆ ℓ , m ℓ ) } where: • the ∆ j s are pairwise disjoint polydiscs of radius r ( ∆ j ) ≤ ǫ , • m j = #( ∆ j , f ) = #(3 ∆ j , f ) for all 1 ≤ j ≤ ℓ , and • Z ( B , f ) ⊆ � ℓ j =1 Z ( ∆ j , f ) ⊆ Z ((1 + δ ) B , f ) for a small δ Notations: f = ( f 1 , . . . , f n ), B = ( B 1 , . . . , B n ) where the B i ’s are square complex boxes ∆ j = (∆ j n ) where the ∆ j 1 , . . . , ∆ j i ’s are complex discs r (∆ j r ( ∆ j ) = max i ) i #( S , f ): nb. of sols (with mult.) of f ( z ) = 0 in S Z ( S , f ): sols of f ( z ) = 0 in S R. Imbach Seminar in Symbolic-Numeric Computing

  11. Introduction Triangular systems Univariate case 2/ 29 Local solution Clustering Problem (LCP) a polynomial map f : C n → C n (assume f ( z ) = 0 is 0-dim), Input: a polybox B ⊂ C n , the Region of Interest (RoI), ǫ > 0 Output: a set of pairs { ( ∆ 1 , m 1 ) , . . . , ( ∆ ℓ , m ℓ ) } where: • the ∆ j s are pairwise disjoint polydiscs of radius r ( ∆ j ) ≤ ǫ , • m j = #( ∆ j , f ) = #(3 ∆ j , f ) for all 1 ≤ j ≤ ℓ , and • Z ( B , f ) ⊆ � ℓ j =1 Z ( ∆ j , f ) ⊆ Z ((1 + δ ) B , f ) for a small δ Definition: a pair ( ∆ , m ) is called natural cluster (relative to f ) when it satisfies: m = #( ∆ , f ) = #(3 ∆ , f ) ≥ 1 if r ( ∆ ) ≤ ǫ , it is a natural ǫ -cluster R. Imbach Seminar in Symbolic-Numeric Computing

  12. Introduction Triangular systems Univariate case 2/ 29 Example System: Let σ ≥ 3 and f ( z ) = 0 be: � ( z 1 − 2 − σ ) 2 ( z 1 + 2 − σ ) = 0 ( z 2 + 2 σ z 2 1 ) 2 ( z 2 − 1) z 2 = 0 Solutions: f ( z ) = 0 has 6 solutions, all real: a 1 = (2 − σ ∆ 2 ← m ( a 1 , f ) = 2 , 0) 1 a 2 = (2 − σ ← m ( a 2 , f ) = 2 , 1) a 3 a 2 a 3 = ( − 2 − σ ← m ( a 3 , f ) = 1 , 1) a 4 = ( − 2 − σ ← m ( a 4 , f ) = 1 , 0) a 5 = ( − 2 − σ − 2 − σ ) ← m ( a 5 , f ) = 2 , 2 − σ 2 − σ a 6 = (2 − σ − 2 − σ ) ← m ( a 6 , f ) = 4 , a 4 a 1 Natural clusters: 2 − σ ∆ 1 ( ∆ 1 , 9) ( ∆ 2 , 3) a 5 a 6 − 1 Notations: m ( a , f ): multiplicity of a as a sol. of f R. Imbach Seminar in Symbolic-Numeric Computing

  13. Introduction Triangular systems Univariate case 2/ 29 Example System: Let σ ≥ 3 and f ( z ) = 0 be: � ( z 1 − 2 − σ ) 2 ( z 1 + 2 − σ ) = 0 ( z 2 + 2 σ z 2 1 ) 2 ( z 2 − 1) z 2 = 0 Solutions: f ( z ) = 0 has 6 solutions, all real: a 1 = (2 − σ ∆ 2 ← m ( a 1 , f ) = 2 , 0) 1 a 2 = (2 − σ ← m ( a 2 , f ) = 2 , 1) a 3 a 2 a 3 = ( − 2 − σ ← m ( a 3 , f ) = 1 , 1) a 4 = ( − 2 − σ ← m ( a 4 , f ) = 1 , 0) a 5 = ( − 2 − σ − 2 − σ ) ← m ( a 5 , f ) = 2 , 2 − σ 2 − σ a 6 = (2 − σ − 2 − σ ) ← m ( a 6 , f ) = 4 ∆ 3 , a 4 a 1 Natural clusters: 2 − σ ( ∆ 1 , 9) ∆ 4 ( ∆ 2 , 3) a 5 a 6 − 1 ( ∆ 3 , 3), ( ∆ 4 , 6) are not natural clusters R. Imbach Seminar in Symbolic-Numeric Computing

  14. Introduction Triangular systems Univariate case 3/ 29 Why root clustering instead of root isolation? Root isolation: • input polynomials with Z or Q coefficients, or • input polynomials squarefree Root clustering: • input polynomials with any C coefficients • robust to multiple roots R. Imbach Seminar in Symbolic-Numeric Computing

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend