power variation and p variation of sample functions of
play

Power variation and p -variation of sample functions of stochastic - PowerPoint PPT Presentation

Power variation and p -variation of sample functions of stochastic processes Rimas Norvai sa Department of Econometric Analysis Vilnius University 15 November 2014, Guanajuato, Mexico 5th Workshop on Game-Theoretic Probability and Related


  1. Power variation and p -variation of sample functions of stochastic processes Rimas Norvaiˇ sa Department of Econometric Analysis Vilnius University 15 November 2014, Guanajuato, Mexico 5th Workshop on Game-Theoretic Probability and Related Topics R. Norvaiˇ sa (VU) Guanajuato, 2014 1 / 11

  2. Power variation of a function Let f be a regulated function on [0 , T ] , i.e. there exist limits f ( t − ) := lim x ↑ t f ( x ) and f ( s +) := lim x ↓ s f ( x ) for each 0 ≤ s < t ≤ T . i ) m ( n ) Let λ = { λ n : n ≥ 1 } be a nested sequence of partitions λ n = ( t n of i =0 [0 , T ] such that ∪ n λ n is dense in [0 , T ] . Let 1 ≤ p < ∞ . We say that f has p -th power λ -variation on [0 , T ] , if there is a regulated function V on [0 , T ] such that V (0) = 0 and for each 0 ≤ s < t ≤ T m ( n ) � | f (( t n i ∧ t ) ∨ s ) − f (( t n i − 1 ∧ t ) ∨ s )) | p , V ( t ) − V ( s ) = lim n →∞ i =1 V ( t ) − V ( t − ) = | f ( t ) − f ( t − ) | p V ( s +) − V ( s ) = | f ( s +) − f ( s ) | p . and R. Norvaiˇ sa (VU) Guanajuato, 2014 2 / 11

  3. p -variation of a function Let f be a function on [0 , T ] (must be regulated if it has bounded p -variation defined next). Let 1 ≤ p < ∞ . The p -variation of f is the quantity v p ( f, [0 , T ]) defined to be � n � | f ( t i ) − f ( t i − 1 ) | p : ( t i ) n � sup i =0 is a partition of [0 , T ] , i =1 which may be finite or infinite. If v p ( f, [0 , T ]) < ∞ then one says that f has bounded p -variation. The p -variation index of f is the quantity υ ( f, [0 , T ]) defined to be inf { p ≥ 1: v p ( f, [0 , T ]) < ∞} . if the set is non-empty and defined to be + ∞ otherwise. R. Norvaiˇ sa (VU) Guanajuato, 2014 3 / 11

  4. Example: Wiener process Let W = { W ( t ): t ∈ [0 , T ] } be a standard Wiener process. Due to results of N. Wiener (1923) and P. L´ evy (1940): v p ( W, [0 , T ]) < + ∞ a.s. iff p > 2 , and v 2 ( W, [0 , T ]) = + ∞ a.s. Thus the p -variation index υ ( W, [0 , T ]) = 2 a.s. More precise information can be obtained in terms of φ -variation, defined as p -variation except that the power function x �→ x p , x ≥ 0 , is replaced by a function φ . S. J. Taylor (1972): v ψ 1 ( W, [0 , T ]) < + ∞ a. s., where ψ 1 ( x ) := x 2 /LL (1 /x ) , 0 < x ≤ e − e . Also, v ψ ( W ) = + ∞ a.s. for any ψ such that ψ 1 ( x ) = o ( ψ ( x )) as x ↓ 0 . R. Norvaiˇ sa (VU) Guanajuato, 2014 4 / 11

  5. Example: Wiener process Let W = { W ( t ): t ∈ [0 , T ] } be a standard Wiener process. Due to results of N. Wiener (1923) and P. L´ evy (1940): v p ( W, [0 , T ]) < + ∞ a.s. iff p > 2 , and v 2 ( W, [0 , T ]) = + ∞ a.s. Thus the p -variation index υ ( W, [0 , T ]) = 2 a.s. More precise information can be obtained in terms of φ -variation, defined as p -variation except that the power function x �→ x p , x ≥ 0 , is replaced by a function φ . S. J. Taylor (1972): v ψ 1 ( W, [0 , T ]) < + ∞ a. s., where ψ 1 ( x ) := x 2 /LL (1 /x ) , 0 < x ≤ e − e . Also, v ψ ( W ) = + ∞ a.s. for any ψ such that ψ 1 ( x ) = o ( ψ ( x )) as x ↓ 0 . R. Norvaiˇ sa (VU) Guanajuato, 2014 4 / 11

  6. Example: Wiener process Let W = { W ( t ): t ∈ [0 , T ] } be a standard Wiener process. Due to results of N. Wiener (1923) and P. L´ evy (1940): v p ( W, [0 , T ]) < + ∞ a.s. iff p > 2 , and v 2 ( W, [0 , T ]) = + ∞ a.s. Thus the p -variation index υ ( W, [0 , T ]) = 2 a.s. More precise information can be obtained in terms of φ -variation, defined as p -variation except that the power function x �→ x p , x ≥ 0 , is replaced by a function φ . S. J. Taylor (1972): v ψ 1 ( W, [0 , T ]) < + ∞ a. s., where ψ 1 ( x ) := x 2 /LL (1 /x ) , 0 < x ≤ e − e . Also, v ψ ( W ) = + ∞ a.s. for any ψ such that ψ 1 ( x ) = o ( ψ ( x )) as x ↓ 0 . R. Norvaiˇ sa (VU) Guanajuato, 2014 4 / 11

  7. Example: fractional Brownian motion Let B H = { B H ( t ): t ∈ [0 , T ] } be a fractional Brownian motion with the Hurst index H ∈ (0 , 1) , i.e. a Gaussian stochastic process with mean zero and the covariance function EB H ( t ) B H ( s ) = 1 t 2 H + s 2 H − | t − s | 2 H � � s, t ∈ [0 , T ] . 2 i ) m ( n ) Let λ n = ( t n i =0 , n ∈ N , be a sequence of partitions of [0 , T ] such that � 1 ∧ (2 H ) log n → 0 as n → ∞ . Then a.s. max i ( t n i − t n � i − 1 ) m ( n ) � 1 /H = E | η | 1 /H T, � � B H ( t n i ) − B H ( t n � � lim i − 1 ) n →∞ i =1 where η is a standard normal random variable. Thus, almost every sample function of B H has 1 /H power λ -variation t �→ c H t , t ∈ [0 , T ] . Also, a.s. v 1 /H ( B H , [0 , T ]) = + ∞ and υ ( B H , [0 , T ]) = 1 /H . R. Norvaiˇ sa (VU) Guanajuato, 2014 5 / 11

  8. Weighted power variation for a Gaussian process Let X = { X ( t ): t ∈ [0 , T ] } be a mean zero Gaussian process s.t. there is a real valued function ρ defined on [0 , T ] and ”equivalent” to h �→ ( E [ X ( s + h ) − X ( s )] 2 ) 1 / 2 near zero uniformly in s ∈ [ ǫ, T ) for each ǫ > 0 . If X has stationary increments, then one can take ρ ( h ) = ( E [ X ( s + h ) − X ( s )] 2 ) 1 / 2 . Under suitable hypotheses on the covariance of X and for a suitable set of positive r we proved that a.s. m n | X ( t n i ) − X ( t n i − 1 ) | r � ( t n i − t n i − 1 ) = E | η | r T, lim (1) [ ρ ( t n i − t n i − 1 )] r n →∞ i =1 i ) m n where η is a standard normal random variable, and (( t n i =0 ) is a sequence of partitions of [0 , T ] such that the mesh max i ( t n i − t n i − 1 ) tends to zero as n → ∞ sufficiently fast. R. Norvaiˇ sa (VU) Guanajuato, 2014 6 / 11

  9. Weighted power variation for a Gaussian process Let X = { X ( t ): t ∈ [0 , T ] } be a mean zero Gaussian process s.t. there is a real valued function ρ defined on [0 , T ] and ”equivalent” to h �→ ( E [ X ( s + h ) − X ( s )] 2 ) 1 / 2 near zero uniformly in s ∈ [ ǫ, T ) for each ǫ > 0 . If X has stationary increments, then one can take ρ ( h ) = ( E [ X ( s + h ) − X ( s )] 2 ) 1 / 2 . Under suitable hypotheses on the covariance of X and for a suitable set of positive r we proved that a.s. m n | X ( t n i ) − X ( t n i − 1 ) | r � ( t n i − t n i − 1 ) = E | η | r T, lim (1) [ ρ ( t n i − t n i − 1 )] r n →∞ i =1 i ) m n where η is a standard normal random variable, and (( t n i =0 ) is a sequence of partitions of [0 , T ] such that the mesh max i ( t n i − t n i − 1 ) tends to zero as n → ∞ sufficiently fast. R. Norvaiˇ sa (VU) Guanajuato, 2014 6 / 11

  10. Partial sum process Let X 1 , X 2 , . . . be real random variables. For each n = 1 , 2 , . . . , let S n be the n -th partial sum process S n ( t ) := X 1 + · · · + X ⌊ tn ⌋ , t ∈ [0 , 1] , Thus for each n = 1 , 2 , . . . and t ∈ [0 , 1] ,  0 , if t ∈ [0 , 1 /n ) ,  if t ∈ [ k n , k +1  X 1 + · · · + X k , n ) ,  S n ( t ) = k ∈ { 1 , . . . , n − 1 } ,   X 1 + · · · + X n , if t = 1 .  Then for any p ∈ (0 , ∞ ) ,   m p  � �  � v p ( S n , [0 , 1]) = max � X k j − 1 +1 + · · · + X k j  , � � �  j =1 where the maximum is taken over 0 = k 0 < · · · < k m = n and 1 ≤ m ≤ n . R. Norvaiˇ sa (VU) Guanajuato, 2014 7 / 11

  11. Partial sum process Let X 1 , X 2 , . . . be real random variables. For each n = 1 , 2 , . . . , let S n be the n -th partial sum process S n ( t ) := X 1 + · · · + X ⌊ tn ⌋ , t ∈ [0 , 1] , Thus for each n = 1 , 2 , . . . and t ∈ [0 , 1] ,  0 , if t ∈ [0 , 1 /n ) ,  if t ∈ [ k n , k +1  X 1 + · · · + X k , n ) ,  S n ( t ) = k ∈ { 1 , . . . , n − 1 } ,   X 1 + · · · + X n , if t = 1 .  Then for any p ∈ (0 , ∞ ) ,   m p  � �  � v p ( S n , [0 , 1]) = max � X k j − 1 +1 + · · · + X k j  , � � �  j =1 where the maximum is taken over 0 = k 0 < · · · < k m = n and 1 ≤ m ≤ n . R. Norvaiˇ sa (VU) Guanajuato, 2014 7 / 11

  12. p -variation of partial sum process J. Bretagnolle (1972): given p ∈ (0 , 2) there exists a finite constant C p such that � n n � E | X i | p ≤ � � E | X i | p , Ev p ( S n ) ≤ C p i =1 i =1 provided X 1 , X 2 , . . . are independent, E | X i | p < ∞ and EX i = 0 if p > 1 . Suppose that X 1 , X 2 , . . . are independent identically distributed real random variables, EX 1 = 0 and EX 2 1 = 1 . Let Lx := max { 1 , log x } , x > 0 . J. Qian (1998): boundedness in probability v 2 ( S n ) = O P ( nLLn ) as n → ∞ . Also, O P ( nLLn ) cannot be replaced by o p ( nLLn ) , if in addition E | X 1 | 2+ ǫ < ∞ for some ǫ > 0 . R. Norvaiˇ sa (VU) Guanajuato, 2014 8 / 11

  13. p -variation of partial sum process J. Bretagnolle (1972): given p ∈ (0 , 2) there exists a finite constant C p such that � n n � E | X i | p ≤ � � E | X i | p , Ev p ( S n ) ≤ C p i =1 i =1 provided X 1 , X 2 , . . . are independent, E | X i | p < ∞ and EX i = 0 if p > 1 . Suppose that X 1 , X 2 , . . . are independent identically distributed real random variables, EX 1 = 0 and EX 2 1 = 1 . Let Lx := max { 1 , log x } , x > 0 . J. Qian (1998): boundedness in probability v 2 ( S n ) = O P ( nLLn ) as n → ∞ . Also, O P ( nLLn ) cannot be replaced by o p ( nLLn ) , if in addition E | X 1 | 2+ ǫ < ∞ for some ǫ > 0 . R. Norvaiˇ sa (VU) Guanajuato, 2014 8 / 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend