polynomial time b
play

polynomial time B polynomial time Stephen Bellantoni and Stephen - PowerPoint PPT Presentation

Exponential Path Order EPO Martin Avanzini 1 Naohi Eguchi 2 Georg Moser 1 1 Computational Logic Faculty of Computer Science, University of Innsbruck, Austria 2 School of Information Science Japan Advanced Institute of Science and Technology,


  1. Exponential Path Order EPO ⋆ Martin Avanzini 1 Naohi Eguchi 2 Georg Moser 1 1 Computational Logic Faculty of Computer Science, University of Innsbruck, Austria 2 School of Information Science Japan Advanced Institute of Science and Technology, Japan June 1 @ RTA’11

  2. polynomial time

  3. B polynomial time Stephen Bellantoni and Stephen Cook A new Recursion-Theoretic Characterization of the Polytime Functions . CC, pages 97–110, 1992

  4. B > pop ⋆ polynomial time Martin Avanzini and Georg Moser Complexity Analysis by Rewriting . FLOPS ’09, pages 130–146, 2008

  5. B > pop ⋆ polynomial time SNRN N exponential time Toshiyasu Arai and Naohi Eguchi A new Function Algebra of EXPTIME Functions by Safe Nested Recursion . TCL, pages 130–146, 2008

  6. B > pop ⋆ polynomial time SNRN SNRN N > epo ⋆ exponential time Martin Avanzini and Naohi Eguchi and Georg Moser A Path Order for Rewrite Systems that Compute Exponential Time Functions . RTA’11, pages 123–138, 2011

  7. Main Result Let FEXP denote class of functions computable in time 2 O( n k ) ( k ∈ N )

  8. Main Result Let FEXP denote class of functions computable in time 2 O( n k ) ( k ∈ N ) 1 Soundness Let R be a constructor TRS that computes a function f . If R ⊆ > epo ⋆ then f ∈ FEXP.

  9. Main Result Let FEXP denote class of functions computable in time 2 O( n k ) ( k ∈ N ) 1 Soundness Let R be a constructor TRS that computes a function f . If R ⊆ > epo ⋆ then f ∈ FEXP. 2 Completeness Let f ∈ FEXP. There exists a constructor TRS R f computing f with R f ⊆ > epo ⋆ .

  10. Main Result Let FEXP denote class of functions computable in time 2 O( n k ) ( k ∈ N ) 1 Soundness Let R be a constructor TRS that computes a function f . If R ⊆ > epo ⋆ then f ∈ FEXP. 2 Completeness Let f ∈ FEXP. There exists a constructor TRS R f computing f with R f ⊆ > epo ⋆ .

  11. Rewriting as Computational Model in this talk We suppose . . . ◮ R confluent and terminating ◮ signature F underlying TRS R partitioned into defined symbols D and constructors C ◮ values V al := T ( C , V ) are terms over constructors C

  12. Rewriting as Computational Model in this talk We suppose . . . ◮ R confluent and terminating ◮ signature F underlying TRS R partitioned into defined symbols D and constructors C ◮ values V al := T ( C , V ) are terms over constructors C Definition TRS R computes for each f ∈ D partial function f : V al k → V al ⊥ s.t. s ∈ V al k . f ( � → ! ∀ � s ) = t : ⇐ ⇒ f( � s ) − R t and t ∈ V al

  13. Rewriting as Computational Model in this talk We suppose . . . ◮ R confluent and terminating ◮ signature F underlying TRS R partitioned into defined symbols D and constructors C ◮ values V al := T ( C , V ) are terms over constructors C Definition TRS R computes for each f ∈ D partial function f : V al k → V al ⊥ s.t. s ∈ V al k . f ( � → ! i ∀ � s ) = t : ⇐ ⇒ f( � s ) R t and t ∈ V al −

  14. Exponential Path Order > epo ⋆ ◮ constraints of N imposed on lexicographic path order > epo ⋆ ⊆ > lpo

  15. Exponential Path Order > epo ⋆ ◮ constraints of N imposed on lexicographic path order > epo ⋆ ⊆ > lpo = ⇒ sufficiently strong for Completeness

  16. Exponential Path Order > epo ⋆ ◮ constraints of N imposed on lexicographic path order > epo ⋆ ⊆ > lpo = ⇒ sufficiently strong for Completeness ◮ induces exponential bound on innermost runtime complexity rc i R

  17. Exponential Path Order > epo ⋆ ◮ constraints of N imposed on lexicographic path order > epo ⋆ ⊆ > lpo = ⇒ sufficiently strong for Completeness ◮ induces exponential bound on innermost runtime complexity rc i R Theorem Let R denote a constructor TRS. There exists k ∈ N such that R ∈ 2 O( n k ) rc i R ⊆ > epo ⋆ = ⇒ s ∈ V al k and f ( � rc i s ) , i R ( n ) = max { dh( f ( � − → R ) | � s ) of size upto n } dh( t , i i i i − → R ) = max { ℓ | ∃ ( t 1 , . . . , t ℓ ) . t − → R t 1 − → R . . . − → R t ℓ }

  18. Exponential Path Order > epo ⋆ ◮ constraints of N imposed on lexicographic path order > epo ⋆ ⊆ > lpo = ⇒ sufficiently strong for Completeness ◮ induces exponential bound on innermost runtime complexity rc i R = ⇒ implies Soundness Theorem Let R denote a constructor TRS. There exists k ∈ N such that R ∈ 2 O( n k ) rc i R ⊆ > epo ⋆ = ⇒ s ∈ V al k and f ( � rc i s ) , i R ( n ) = max { dh( f ( � → R ) | � − s ) of size upto n } dh( t , i i i i − → R ) = max { ℓ | ∃ ( t 1 , . . . , t ℓ ) . t − → R t 1 − → R . . . − → R t ℓ }

  19. Exponential Path Order > epo ⋆ ◮ constraints of N imposed on lexicographic path order > epo ⋆ ⊆ > lpo = ⇒ sufficiently strong for Completeness ◮ induces exponential bound on innermost runtime complexity rc i R = ⇒ implies Soundness Ugo Dal Lago and Simone Martini On Constructor Rewrite Systems and the Lambda-Calculus . 36th ICALP, pages 163–174, 2009

  20. Exponential Path Order > epo ⋆ ◮ constraints of N imposed on lexicographic path order > epo ⋆ ⊆ > lpo = ⇒ sufficiently strong for Completeness ◮ induces exponential bound on innermost runtime complexity rc i R = ⇒ implies Soundness Ugo Dal Lago and Simone Martini On Constructor Rewrite Systems and the Lambda-Calculus . 36th ICALP, pages 163–174, 2009 Martin Avanzini and Georg Moser Closing the Gap Between Runtime Complexity and Polytime Computability . RTA’10, pages 33–48, 2010

  21. The class N Syntactic, Recursion-theoretic Characterisation of FEXP

  22. The class N is the smallest class . . . 1 containing certain initial function projections, successors, . . . 2 closed under safe nested recursion on notation 3 closed under weak safe composition

  23. Safe Recursion on Notation ◮ syntactical restriction of primitive recursion scheme f ( x 1 , . . . , x k ; y 1 , . . . , y l ) � �� � � �� � normal safe

  24. Safe Recursion on Notation ◮ syntactical restriction of primitive recursion scheme f ( x 1 , . . . , x k ; y 1 , . . . , y l ) � �� � � �� � normal safe ◮ separates recursion parameters from recursively computed results f ( ǫ,� x ; � y ) = g ( � x ; � y ) f ( zi ,� x ; � y ) = h i ( z ,� x ; � y , f ( z ,� x ; � y )) ( i ∈ { 0 , 1 } )

  25. Safe Recursion on Notation ◮ syntactical restriction of primitive recursion scheme f ( x 1 , . . . , x k ; y 1 , . . . , y l ) � �� � � �� � normal safe ◮ separates recursion parameters from recursively computed results f ( ǫ,� x ; � y ) = g ( � x ; � y ) f ( zi ,� x ; � y ) = h i ( z ,� x ; � y , f ( z ,� x ; � y )) ( i ∈ { 0 , 1 } )

  26. Safe Recursion on Notation ◮ syntactical restriction of primitive recursion scheme f ( x 1 , . . . , x k ; y 1 , . . . , y l ) � �� � � �� � normal safe ◮ separates recursion parameters from recursively computed results f ( ǫ,� x ; � y ) = g ( � x ; � y ) f ( zi ,� x ; � y ) = h i ( z ,� x ; � y , f ( z ,� x ; � y )) ( i ∈ { 0 , 1 } ) where h i ( ǫ,� x ; � y , r ) = r i ( � x ; � y , r ) h i ( zi ,� x ; � y , r ) = s i , j ( z ,� x ; � y , h i ( z ,� x ; � y , r )) no recursion on recursively computed result

  27. Safe Nested Recursion on Notation extends safe recursion on notation with . . . 1 nesting of recursive function calls nested recursion f ( ǫ ; y ) = g (; y ) f ( xi ; y ) = r i ( x ; y , f ( x ; s i ( x ; y , f ( x ; . . . ))))

  28. Safe Nested Recursion on Notation extends safe recursion on notation with . . . 1 nesting of recursive function calls nested recursion f ( ǫ ; y ) = g (; y ) f ( xi ; y ) = r i ( x ; y , f ( x ; s i ( x ; y , f ( x ; . . . )))) 2 simultaneous recursion on all normal arguments multiple recursion f ( ǫ, ǫ ; z ) = g (; z ) f ( xi , ǫ ; z ) = r i ,ǫ ( x , ǫ ; z , f ( x , ǫ ; s i ,ǫ ( x , ǫ ; f ( x , ǫ ; z )))) f ( ǫ, yj ; z ) = r ǫ, j ( ǫ, y ; z , f ( ǫ, y ; s ǫ, j ( ǫ, y ; f ( ǫ, y ; z )))) f ( xi , yj ; z ) = r i , j ( x , y ; z , f ( xi , y ; s i , j ( x , y ; f ( x , yj ; z )))) • case analysis on least significant “bits” of recursion parameters

  29. Safe Nested Recursion on Notation extends safe recursion on notation with . . . 1 nesting of recursive function calls nested recursion f ( ǫ ; y ) = g (; y ) f ( xi ; y ) = r i ( x ; y , f ( x ; s i ( x ; y , f ( x ; . . . )))) 2 simultaneous recursion on all normal arguments multiple recursion f ( ǫ, ǫ ; z ) = g (; z ) f ( xi , ǫ ; z ) = r i ,ǫ ( x , ǫ ; z , f ( x , ǫ ; s i ,ǫ ( x , ǫ ; f ( x , ǫ ; z )))) f ( ǫ, yj ; z ) = r ǫ, j ( ǫ, y ; z , f ( ǫ, y ; s ǫ, j ( ǫ, y ; f ( ǫ, y ; z )))) f ( xi , yj ; z ) = r i , j ( x , y ; z , f ( xi , y ; s i , j ( x , y ; f ( x , yj ; z )))) • case analysis on least significant “bits” of recursion parameters • lexicographic decreasing recursion parameters

  30. Safe Composition Requirements 1 composition maintains separation of safe and normal arguments

  31. Safe Composition Requirements 1 composition maintains separation of safe and normal arguments Safe Composition employed in B f ( � x ; � y ) = g ( � r ( � x ; ); � s ( � x ; � y ))

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend