pip ii injector test warm front end
play

PIP-II Injector Test Warm Front End: Commissioning Update Lionel - PowerPoint PPT Presentation

FERMILAB-SLIDES-18-100-AD PIP-II Injector Test Warm Front End: Commissioning Update Lionel Prost In partnership with: India/DAE 9 th International Particle Accelerator Italy/INFN Conference UK/STFC France/CEA/Irfu, CNRS/IN2P3 April 29


  1. FERMILAB-SLIDES-18-100-AD PIP-II Injector Test Warm Front End: Commissioning Update Lionel Prost In partnership with: India/DAE 9 th International Particle Accelerator Italy/INFN Conference UK/STFC France/CEA/Irfu, CNRS/IN2P3 April 29 – May 4, 2018 This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE- Vancouver, BC, Canada AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

  2. ------------------------------0 Fermilab Acknowledgement • Results summarized within would not have been possible without the help and dedication of many (and I apologize in advance for missing some), in no particular order: D. Sun, A. Chen, P. Jones, D. Franck, D. Lambert, R. Kellett, C. Baffes, J. Batko, J. Czajkowski, T. Hamerla, T. Zuchnik, C. Briegel, J. Firebaugh, S. Conlon, G. Brown, R. Hagler, A. Saewert, G. Saewert, D. Frolov, V. Lebedev, R. Pasquinelli, A. Shemyakin, J. Steimel, B. Hanna, R. Andrews, J.-P. Carneiro, K. Carlson, B. Chase, D. Peterson, J. Edelen, J. Dye, W. Mueller, J. Einstein- Curtis, D. Sharma, S. Khole, V. Scarpine, B. Fellenz, N. Eddy, A. Warner, D. Nicklaus, M. Kucera, D. Arveson, A. Saini, E. Cullerton, M. Hassan, K. Kendziora, P. Derwent, M. Coburn, M. Ibrahim, V.L.S. Sista, C. Richard Designates co-authors 2 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  3. ------------------------------0 Fermilab Outline • Proton Improvement Plan II (PIP-II) & PIP-II Injector Test (PIP2IT) – Introduction, scope & goals for the Warm Front End (WFE) • PIP2IT WFE commissioning status – Focus on Medium Energy Beam Transfer (MEBT) line • Plans for high-power operation – 10+ kW • Conclusion 3 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  4. 0Fermilab Proton Improvement Plan-II (PIP-II) S. Nagaitsev’s talk (MOYGB3) • Upgrades to Fermilab’s accelerator complex – Central part: 800 MeV, 2 mA (average over ~ m s) CW-compatible H - Superconducting Linac and transfer line to Booster • Present ‘warm’ Linac: 400 MeV, 30 mA, 40 m s × 15 Hz – MW-class accelerator with multi-user operation capability Linac Muon • Platform for future upgrades Booster rings – Higher Main Injector power, multiple experiments 1 I I simultaneously I I I I I I I I I PIP2 linac and transfer line Layout of PIP-II and its possible future upgrades 4 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  5. ------------------------------0 Fermilab PIP-II Injector Test (PIP2IT) • A test accelerator representing the PIP-II front end -- .... ---- ------- - ___. <. l•i:i••;Ji•l•~tiii ~ ii , • _ ..... _ Ji=Cl.22 Ji=0.64 Ji=0.97 ---------- +< --- RT --- 31>-+- ------- SC -------- 1111 - 1111 - 1111 325 MHz 650 MHz 162.5 MHz 0.03 -10.3 MeV 10.3-185 MeV 185-800 MeV ~160 m PIP-II Linac scheme 30 keV 2.1 MeV 10 MeV 25 MeV LEBT RFQ MEBT HWR SSR1 HEBT PIP2IT scheme Warm front end LEBT = Low Energy Beam Transport; RFQ= Radio Frequency Quadrupole; MEBT= Medium Energy Beam Transport; HWR = Half-Wave Resonator; SSR1=Single Spoke Resonator; HEBT = High Energy Beam Transport 5 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  6. ------------------------------0 Fermilab Warm Front End scope • The Warm Front End (WFE) prepares a H - beam optimized for injection into the Booster and provides capabilities for future CW operation • It is composed of: – Two Ion Sources (IS) – Medium Energy Beam Transport (MEBT) and a Low Energy Beam Transport (LEBT) • Nominal output current: 2 mA averaged over ~ m s (from m s to CW • DC /long pulse operation operation ) – RFQ • Bunch-by-bunch chopping • CW operation (RF) capability • 30 keV 2.1 MeV Ion sources RFQ MEBT LEBT 6 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  7. 0Fermilab PIP2IT WFE main goals • Address all critical issues: .... / – LEBT with low emittance growth compatible \ I I I I I with chopping Reported . I I I I previously • Vacuum management in the LEBT/RFQ region I : I I – Reliable CW RFQ, including couplers I ' -------------------------------- ------- I – Bunch-by-bunch selection in MEBT • Bunch extinction, effective emittance growth – Compatibility of high-power deposition in MEBT absorber with SRF downstream • Absorber reliability & lifetime Warm front end of PIP2IT with HWR installed 7 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  8. LEBT and RFQ performance highlights • LEBT delivers up to 10 mA, 10 m s-dc, 20 Hz – e n,rms = 0.13 mm mrad (for < 5 mA) • RFQ operated pulsed (up to 5 ms) or CW, 162.5 MHz, 60 kV – Time of Flight measurements → 2.11 ± 0.006 MeV – 98 ± 2% transmission efficiency at 5 mA (pulsed beam) • Up to 10 mA with low losses – e n,rms < 0.2 mm mrad (for < 5 mA, nominal) Emittan Dipol Bun hing MEBT configuration for characterization of the RFQ 8 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  9. --------------------- OFermilab PIP2IT beam line configuration • Full length MEBT has been installed at the CryoModule Test Facility (CMTF) followed by a high-power dump 200-Ohm Dump DPI kicker Ion Source & RFQ – Includes two different prototype kickers (50-Ohm & 200-Ohm), all scraper paddles, prototype absorber, Differential Pumping Insert (DPI) and various diagnostics Absorber Fast acting Emittance F-scraper prototype valve scanner / DPI RWCM Fast Faraday 50-Ohm kicker 200-Ohm kicker ACCT Cup prototype prototype 9 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  10. 0Fermilab Beam transport • Demonstrated 96% availability (over 24 hours) for beam with nominal MEBT parameters – 5 mA × 0.55 ms × 2.1 MeV × 20 Hz = 115 W with appropriate bunch pattern for Booster injection • Up to 10 mA to the dump with negligible uncontrolled losses – Dedicated distributed scraping system removes ~2% (halo) • Measured beam emittances near the end of the MEBT – 0.22/0.34 mm mrad (rms, n) Transverse/Longitudinal 4 50 -----------------------------~ + FFC Data - Tracewin (« ,=O , P ,=1.2 mm/mrad, c,=0. 34 mm-mrad) ~400 I (.) Angle, mrad lL lL :. j350 .c Vertical phase- "' Bunch length vs. bunching space with 300 e rms,n = 0.22 mm mrad a: cavity #2 voltage (5 mA, Allison scanner 10 m s pulse) and ‘fit’ with (5 mA, 10 m s 2~ -- -= 35 ':--- 4 ""' 0 --""' 4 "=5 -- -= 50 =--- s,f,.s ,--- - -- -==- -----, 1 cf: o -- -= 1 s ----= =- so Tracewin pulse) Position, mm B2 Field (kV) 10 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  11. 0Fermilab Chopping system concept • 2 identical kickers in sync and a beam absorber – Two broadband travelling-wave kickers separate bunches by 6 s – Absorber is rated for 21 kW (i.e. full max. beam power) • Beam comes at 29 mrad to decrease power density to <17 W/mm 2 20 15 to E5 5 0 +-iff-+ttllt- - ttt - ...JW >- -5 -10 -15 -20 --+-..u.J-- ................... -1--- ......... ,,_..__~.;u.swc.--..-'L-IJ/L----- ......... ~~~....., -'---r-...L.J/-.W.,--..-'L....ljl.-'--,- .......... W......--'/-W.,..II...J..,~i--- ........... 12 0 10 14 15 10 iii ii~ If I iii Dlf ~5 E 5 0 >- ·5 3σ envelopes of the transmitted -10 (a) and chopped-out (b) bunches -15 __ ...................... --....._.,...... ....... ..,..... __ .................................... 6 8 14 simulated with TraceWin. 0 2 10 12 4 Position (m) 11 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  12. 0Fermilab Kickers development • Two versions developed in parallel  1 of each prototype installed at PIP2IT “50 - Ohm” “200 - Ohm” ➢ 24 electrodes per plate connected in ➢ Helix as a travelling-wave structure ➢ Driver developed at Fermilab vacuum by 50 Ohm cables ➢ Driver: commercially available linear ▪ Broadband, DC-coupled switches in amplifier push-pull configuration ▪ Concept tested with similar lower-power amplified A. Chen G. Saewert G. Saewert’s poster (WEPML021) D. Sun A. Chen 12 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

  13. 0Fermilab Kickers characterization • Both kickers (50-Ohm and 200-Ohm) meet specs D. Sun – For D V = 500 V (nominal), angle of deflection G. Saewert A. Chen B. Chase at the end of either kicker is > 7 mrad (specs) V. Lebedev • Demonstrated arbitrary bunch structure – Kicked bunches intercepted 200-Ohm kicker DPI with a scraper → passing bunches recorded with Resistive Wall Current Monitor (RWCM) Kick Top scraper T. Hamerla partially inserted PIP 2- IT MEBT Wall Current Monitor Signal 0.0200 0.0175 0.0150 ~0.0125 jo.0100 RWCM J 0.0075 0.0050 , - --t f-f-t-f-+HIIIHIII F. Frolov 0.0025 0.0000 G. Saewert 1 800 1000 2.4 m s J. Simmons 13 May 3, 2018 L. Prost et al. | PIP-II WFE Commissioning Update (THYGBF2)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend