physics of the tau lepton
play

Physics of the tau lepton Jorge Portols Instituto de Fsica - PowerPoint PPT Presentation

Physics of the tau lepton Jorge Portols Instituto de Fsica Corpuscular CSIC-UVEG, Valencia (Spain) Leptons [1] Discovery of the tau lepton SLAC-LBL (SLAC,1975), PLUTO (DESY,1976) anomalous e events [2] Momentum of e or


  1. Physics of the tau lepton Jorge Portolés Instituto de Física Corpuscular CSIC-UVEG, Valencia (Spain)

  2. Leptons [1] Discovery of the tau lepton SLAC-LBL (SLAC,1975), PLUTO (DESY,1976) “anomalous” e  events [2] Momentum of e or   DONuT (Direct Observation of Nu Tau), 2000

  3. P ª Pseudoscalar meson Decay spectrum    p, n   ’  K   [1.77682(16)]  e (GeV ) 1 2

  4. Experiment Estimate Process

  5. Outline  Leptonic decays  Hadron decays Inclusive tau decays:  S (M  ) and |V us | I. II. Exclusive tau decays: Hadronization of QCD currents E. g.

  6. [3] Charged current universality 1. Lepton decays

  7. [4] 2. Hadron decays

  8. What can we get? 1. Inclusive decays: full hadron spectra. Precision physics. Study of Standard Model parameters :  S (M  ), |V us |, m S Approximate 2. Exclusive decays: specific hadron spectrum. physics P = pseudoscalar meson Study of form factors, resonance parameters (M R ,  R ), hadronization of QCD currents.

  9. 2 2.1 Inclusive hadron decays 2

  10. 2 [5]

  11. A A + V V S=1 S=0

  12. A A + V J [6] V

  13. [7] [8]

  14. Working on the theoretical prediction of …. to get , ..... analytic everywhere except on the positive real axis analytic [9] Im(s) OPE 2 M  Re(s) Quark-Hadron duality violation

  15. Perturbative contribution [8,11,12] [3,10]

  16. [14] [15] [13] Non-perturbative contributions [9, 13]

  17. Reference Method Baikov et al. [12] CIPT, FOPT 0.1998 (43) - 0.332 (16) 0.1202 (19) Davier et al. [8] CIPT 0.2066 (70) -0.0059 (14) 0.344 (09) 0.1212 (11) Beneke-Jamin [16] BSR + FOPT 0.2042 (50) -0.007 (03) 0.316 (06) 0.1180 (08) Maltman-Yavin [17] PWM + CIPT - +0.012 (18) 0.321 (13) 0.1187 (16) Menke [18] CIPT, FOPT 0.2042 (50) - 0.342 (11) 0.1213 (12) Narison [19] CIPT, FOPT - - 0.324 (08) 0.1192 (10) Caprini-Fischer [20] BSR + CIPT 0.2037 (54) - 0.322 (16) - Abbas et al. [21] IFOPT 0.2037 (54) - 0.338 (10) -  exp + CIPT Cvetic et al. [22] 0.2040 (40) - 0.341 (08) 0.1211 (10) Boito et al. [23] CIPT, DV - -0.002 (12) 0.347 (25) 0.1216 (27) FOPT, DV - -0.004 (12) 0.325 (18) 0.1191 (22) Pich [24] CIPT, FOPT 0.1995 (33) -0.0059 (14) 0.329 (13) 0.1198 (15)  exp : Expansion in derivatives of  s CIPT : Contour-improved perturbation theory FOPT : Fixed-order perturbation theory PWM : Pinched-weight moments BSR : Borel summation of renormalon series DV : Duality violation IFOPT: Improved FOPT

  18. m S and |V us | from inclusive tau data decays [25, 26]

  19. [Gamiz, 05]

  20. V us Unitarity (2005) RBC/UK (2009) 0.23 Expts QCD, 06 0.2275 (2005) V 0.225 (2007) us M = Maltman (2009) 0.2225 B CHPT+ P = Pich (2013) JOP LR 0.22 (2004) BT 0.2175 CHPT+ (2004) N C, (2005) M P LR = Leutwyler-Roos (1984) BT = Bijnens-Talavera (2003) Expts = FLAVIAnet WG (2010) JOP = Jamin-Oller-Pich (2004) CHPT+N C = Cirigliano et al (2006) B = A. Bazavov et al. (2012)

  21. 2.2 Exclusive hadron decays

  22. Examples

  23. [27,28] Phenomenological Lagrangians : Tree Level

  24. [29,30,31] +

  25. [32]

  26. 1. Inclusive decays: full hadron spectra. Precision physics. Study of Standard Model parameters :  S (M  ), |V us |, m S 2. Exclusive decays: specific hadron spectrum. Approximate physics P = pseudoscalar meson Study of form factors, resonance parameters (M R ,  R ), hadronization of QCD currents.

  27. References [1] J. Adam, et al., [MEG Collaboration], arXiv:1303.0754 [hep-ex]. [2] H. Albrecht, et al., [ARGUS Collaboration], Phys. Lett. 246 (1990) 278. [3] W.J. Marciano, A. Sirlin, Phys. Rev. Lett. 61 (1988) 1815. [4] J.H. Kühn, E. Mirkes, Z. Phys. C56 (1992) 661. Erratum: Z. Phys. C67 (1995) 364. [5] C. Itzykson, J-B. Zuber, Quantum Field Theory, McGraw-Hill Co. (1985) p.246. [6] Heavy Flavour Averaging Group, http://www.slac.stanford.edu/xorg/hfag/ [7] M. Davier, A. Höcker, Z. Zhang, Rev. Mod. Phys. 78 (2006) 1043. [8] M. Davier et al., Eur. Phys. J. C56 (2008) 305. [9] E. Braaten, S. Narison, A. Pich, Nucl. Phys. B373 (1992) 581. [10] J. Erler, Rev. Mex. Fis. 50 (2004) 200. [11] F. Le Diberder, A. Pich, Phys. Lett. B286 (1992) 147. [12] P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Phys. Rev. Lett. 101 (2008) 012002. [13] M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B147 (1979) 385, 448. [14] C. McNeile et al, Phys. Rev. D87 (2013) 034503. [15] M. Jamin, Phys. Lett. B538 (2002) 71. [16] M. Beneke, M. Jamin, JHEP 0809 (2008) 044. [17] K. Maltman, T. Yavin, Phys. Rev. D78 (2008) 094020. [18] S. Menke, arXiv:0904.1796 [hep-ph]. [19] S. Narison, Phys. Lett. B673 (2009) 30. [20] I. Caprini, J. Fischer, Phys. Rev. D84 (2011) 054019. [21] G. Abbas et al., Phys. Rev. D87 (2013) 014008. [22] G. Cvetic et al., Phys. Rev. D82 (2010) 093007. [23] D. Boito et al., Phys. Rev. D85 (2012) 093015.

  28. [24] A. Pich, arXiv:1303.2262 [hep-ph]. [25] E. Gámiz et al., Phys. Rev. Lett. 94 (2005) 011803. [26] A. Pich, arXiv:1301.4474 [hep-ph]. [27] G. Ecker et al., Nucl. Phys. B321 (1989) 311. [28] J. Portolés, AIP Conf.Proc. 1322 (2010) 178. [29] G. Ecker et al., Phys. Lett. B223 (1989) 425. [30] F. Guerrero, A. Pich, Phys. Lett. B412 (1997) 382. [31] A. Pich, J. Portolés, Phys.Rev. D63 (2001) 093005. [32] D. Gómez Dumm et al, Phys. Lett. B685 (2010) 158.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend