phase structure of a defect field theory with a domain
play

Phase structure of a defect field theory with a domain wall. V. - PowerPoint PPT Presentation

Phase structure of a defect field theory with a domain wall. V. Filev IMI, Bulgarian Academy of Sciences Vienna July 2018 Filev (IMI) Defect field theory with a domain wall. MMNGST 18 1 / 40 Outline AdS/CFT correspondence 1 Adding


  1. Phase structure of a defect field theory with a domain wall. V. Filev IMI, Bulgarian Academy of Sciences Vienna July 2018 Filev (IMI) Defect field theory with a domain wall. MMNGST 18 1 / 40

  2. Outline AdS/CFT correspondence 1 Adding flavours D3/D7 Karch & Katz Meson melting phase transition Critical behaviour D0/D4 system 2 Lower dimensional correspondence Berkooz-Douglas matrix model Comparison Defect field theory with a domain wall 3 Introducing probe D5-branes Introducing the domain wall Critical point Filev (IMI) Defect field theory with a domain wall. MMNGST 18 2 / 40

  3. AdS/CFT correspondence Type IIB String Theory on Nc D3 AdS 5 × S 5 N = 4 SU ( N c ) SUSY YM Gubser-Klebanov-Polyakov-Witten formula: d d x φ 0 ( x ) �O ( x ) � � CFT = Z string [ φ 0 ( x )] � � e Filev (IMI) Defect field theory with a domain wall. MMNGST 18 3 / 40

  4. AdS/CFT correspondence Type IIB String Theory on Nc D3 AdS 5 × S 5 N = 4 SU ( N c ) SUSY YM Gubser-Klebanov-Polyakov-Witten formula: d d x φ 0 ( x ) �O ( x ) � � CFT = Z string [ φ 0 ( x )] � � e Filev (IMI) Defect field theory with a domain wall. MMNGST 18 3 / 40

  5. Adding flavours D3/D7 Karch & Katz Generalizing the correspondence Nc D3 m Nf D7 0 1 2 3 4 5 6 7 8 9 · · · · · · D3 - - - - D7 - - - - - - - - · · Adding N f massive N = 2 Hypermultiplets: 0 � d 2 θ ˜ m q = m / 2 πα ′ m q Q Q → SYM with Filev (IMI) Defect field theory with a domain wall. MMNGST 18 4 / 40

  6. Adding flavours D3/D7 Karch & Katz Generalizing the correspondence Nc D3 m Nf D7 0 1 2 3 4 5 6 7 8 9 · · · · · · D3 - - - - D7 - - - - - - - - · · Adding N f massive N = 2 Hypermultiplets: 0 � d 2 θ ˜ m q = m / 2 πα ′ m q Q Q → SYM with Filev (IMI) Defect field theory with a domain wall. MMNGST 18 4 / 40

  7. String spectrum pure N =4 SYM 3-3 strings adjoint of SU ( N c ) 3-7 strings Q i fundamental chiral field Q i anti-fundamental chiral field ˜ 7-3 strings gauge field on the D7 brane 7-7 strings frozen by infinite volume Filev (IMI) Defect field theory with a domain wall. MMNGST 18 5 / 40

  8. Probe approximation N f ≪ N c The probe is described by a Dirac-Born-Infeld action � d 7 ξ e − Φ � || G ab − 2 πα ′ F ab || S ∝ The profile of the D-brane encodes the fundamental condensate of theory. The semi-classical fluctuations correspond to meson-like excitations. The D-brane gauge field can describe: external electromagnetic field, chemical potential, electric current etc. Numerous applications: thermal and quantum phase transitions, chiral symmetry breaking, magnetic catalysis etc. Filev (IMI) Defect field theory with a domain wall. MMNGST 18 6 / 40

  9. Probe approximation N f ≪ N c The probe is described by a Dirac-Born-Infeld action � d 7 ξ e − Φ � || G ab − 2 πα ′ F ab || S ∝ The profile of the D-brane encodes the fundamental condensate of theory. The semi-classical fluctuations correspond to meson-like excitations. The D-brane gauge field can describe: external electromagnetic field, chemical potential, electric current etc. Numerous applications: thermal and quantum phase transitions, chiral symmetry breaking, magnetic catalysis etc. Filev (IMI) Defect field theory with a domain wall. MMNGST 18 6 / 40

  10. Probe approximation N f ≪ N c The probe is described by a Dirac-Born-Infeld action � d 7 ξ e − Φ � || G ab − 2 πα ′ F ab || S ∝ The profile of the D-brane encodes the fundamental condensate of theory. The semi-classical fluctuations correspond to meson-like excitations. The D-brane gauge field can describe: external electromagnetic field, chemical potential, electric current etc. Numerous applications: thermal and quantum phase transitions, chiral symmetry breaking, magnetic catalysis etc. Filev (IMI) Defect field theory with a domain wall. MMNGST 18 6 / 40

  11. Probe approximation N f ≪ N c The probe is described by a Dirac-Born-Infeld action � d 7 ξ e − Φ � || G ab − 2 πα ′ F ab || S ∝ The profile of the D-brane encodes the fundamental condensate of theory. The semi-classical fluctuations correspond to meson-like excitations. The D-brane gauge field can describe: external electromagnetic field, chemical potential, electric current etc. Numerous applications: thermal and quantum phase transitions, chiral symmetry breaking, magnetic catalysis etc. Filev (IMI) Defect field theory with a domain wall. MMNGST 18 6 / 40

  12. Probe approximation N f ≪ N c The probe is described by a Dirac-Born-Infeld action � d 7 ξ e − Φ � || G ab − 2 πα ′ F ab || S ∝ The profile of the D-brane encodes the fundamental condensate of theory. The semi-classical fluctuations correspond to meson-like excitations. The D-brane gauge field can describe: external electromagnetic field, chemical potential, electric current etc. Numerous applications: thermal and quantum phase transitions, chiral symmetry breaking, magnetic catalysis etc. Filev (IMI) Defect field theory with a domain wall. MMNGST 18 6 / 40

  13. Meson melting phase transition Consider the AdS-black hole background: − u 4 − u 4 x 2 + u 2 R 2 R 2 u 2 dt 2 + u 2 du 2 + u 2 d Ω 2 ds 2 0 R 2 d � = 5 . u 4 − u 4 0 3 + sin 2 θ d φ 2 5 = d θ 2 + cos 2 θ d Ω 2 d Ω 2 Filev (IMI) Defect field theory with a domain wall. MMNGST 18 7 / 40

  14. Meson melting phase transition Consider the AdS-black hole background: − u 4 − u 4 x 2 + u 2 R 2 R 2 u 2 dt 2 + u 2 du 2 + u 2 d Ω 2 ds 2 0 R 2 d � = 5 . u 4 − u 4 0 3 + sin 2 θ d φ 2 5 = d θ 2 + cos 2 θ d Ω 2 d Ω 2 Filev (IMI) Defect field theory with a domain wall. MMNGST 18 7 / 40

  15. Critical behaviour Dp/Dq Consider a general Dp/Dq system ( D. Mateos, R. Myers, R. Thomson 2007 ) and the parametrisation: 8 − p = d θ 2 + sin 2 θ d Ω 2 n + cos 2 θ d Ω 7 − p − n d Ω 2 Next we zoom in at the near horizon geometry: � L � p − 3 � 7 − p θ = y � u 0 4 u = u 0 + π T z 2 , � 4 ˜ � , x = x L u 0 L To obtain the metric: ds 2 = − ( 2 π T ) 2 z 2 dt 2 + dz 2 + dy 2 + y 2 d Ω 2 x 2 + . . . n + d � ˜ Filev (IMI) Defect field theory with a domain wall. MMNGST 18 8 / 40

  16. Critical behaviour Dp/Dq Consider a general Dp/Dq system ( D. Mateos, R. Myers, R. Thomson 2007 ) and the parametrisation: 8 − p = d θ 2 + sin 2 θ d Ω 2 n + cos 2 θ d Ω 7 − p − n d Ω 2 Next we zoom in at the near horizon geometry: � L � p − 3 � 7 − p θ = y � u 0 4 u = u 0 + π T z 2 , � 4 ˜ � , x = x L u 0 L To obtain the metric: ds 2 = − ( 2 π T ) 2 z 2 dt 2 + dz 2 + dy 2 + y 2 d Ω 2 x 2 + . . . n + d � ˜ Filev (IMI) Defect field theory with a domain wall. MMNGST 18 8 / 40

  17. Critical behaviour Dp/Dq Consider a general Dp/Dq system ( D. Mateos, R. Myers, R. Thomson 2007 ) and the parametrisation: 8 − p = d θ 2 + sin 2 θ d Ω 2 n + cos 2 θ d Ω 7 − p − n d Ω 2 Next we zoom in at the near horizon geometry: � L � p − 3 � 7 − p θ = y � u 0 4 u = u 0 + π T z 2 , � 4 ˜ � , x = x L u 0 L To obtain the metric: ds 2 = − ( 2 π T ) 2 z 2 dt 2 + dz 2 + dy 2 + y 2 d Ω 2 x 2 + . . . n + d � ˜ Filev (IMI) Defect field theory with a domain wall. MMNGST 18 8 / 40

  18. Critical behaviour Dp/Dq cont. The resulting EOM for Minkowski embeddings is: y 2 ) = 0 z y ¨ y + ( y ˙ y − nz )( 1 + ˙ It has scaling symmetry: if y ( z ) is a solution so is y ( µ z ) /µ . And a critical solution y = √ n z , linearising we obtain: √ n z + T − 1 y = 2 [ a sin ( α log Tz ) + b cos ( α Tz )] , n ( Tz ) � 4 ( n + 1 ) − n 2 / 2. Under the scaling symmetry the with α = constants a , b transform as: � cos ( α log µ ) � a � 1 � � a � sin ( α log µ ) → n b − sin ( α log µ ) cos ( α log µ ) b 2 + 1 µ This is a double spiral signalling a discrete self-similar structure, which forces the phase transition into a first order one. This behaviour is universal (depends only on n ). Filev (IMI) Defect field theory with a domain wall. MMNGST 18 9 / 40

  19. Critical behaviour Dp/Dq cont. The resulting EOM for Minkowski embeddings is: y 2 ) = 0 z y ¨ y + ( y ˙ y − nz )( 1 + ˙ It has scaling symmetry: if y ( z ) is a solution so is y ( µ z ) /µ . And a critical solution y = √ n z , linearising we obtain: √ n z + T − 1 y = 2 [ a sin ( α log Tz ) + b cos ( α Tz )] , n ( Tz ) � 4 ( n + 1 ) − n 2 / 2. Under the scaling symmetry the with α = constants a , b transform as: � cos ( α log µ ) � a � 1 � � a � sin ( α log µ ) → n b − sin ( α log µ ) cos ( α log µ ) b 2 + 1 µ This is a double spiral signalling a discrete self-similar structure, which forces the phase transition into a first order one. This behaviour is universal (depends only on n ). Filev (IMI) Defect field theory with a domain wall. MMNGST 18 9 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend