phase separation interfaces and wetting in two dimensions
play

Phase separation, interfaces and wetting in two dimensions. Exact - PowerPoint PPT Presentation

Mathematical Statistical Physics 29 July - 3 August 2013, YITP, Kyoto Phase separation, interfaces and wetting in two dimensions. Exact results from field theory Gesualdo Delfino SISSA, Trieste Based on : GD, J. Viti, Phase separation and


  1. Mathematical Statistical Physics 29 July - 3 August 2013, YITP, Kyoto Phase separation, interfaces and wetting in two dimensions. Exact results from field theory Gesualdo Delfino SISSA, Trieste

  2. Based on : GD, J. Viti, Phase separation and interface structure in two dimensions from field theory, J. Stat. Mech. (2012) P10009 [arXiv:1206.4959] GD, A. Squarcini, Interfaces and wetting transition on the half plane. Exact results from field theory, J. Stat. Mech. (2013) P05010 [arXiv:1303.1938] GD, A. Squarcini, Multiple interfaces, to appear

  3. phase separation classical topic of statistical mechanics empha- sizing role of boundary conditions and notion of interface − − − − − − − + + + + + + + − − − + + − − − + + − − + + − + + + + + − + − + + − − + − − + + + − + + + + + − − − − − − + − − − − + + − − + − + − + − − − − − + − + + + + + − − − − − − − + + + + + + + exact analytic results for bulk magnetization have been available for 2D Ising issues in 2D: • general results • role of integrability • universality answers provided by field theory

  4. Pure phases and kinks ferromagnet with spin σ taking discrete values, and 2nd order transition at T c scaling limit ↔ Euclidean field theory Ω 2 below T c : degenerate vacua | Ω a � Κ 12 Ω Κ 1 23 elementary excitations in 2D : kinks | K ab ( θ ) � connecting Ω 3 | Ω a � and | Ω b � ( e, p ) = ( m ab cosh θ, m ab sinh θ ) | Ω a � , | Ω b � non-adjacent if connected by | K ac 1 ( θ 1 ) K c 1 c 2 ( θ 2 ) . . . K c j − 1 b ( θ j ) � with j > 1 only a lim R →∞ : pure phase a � σ � a ≡ � Ω a | σ ( x, y ) | Ω a � R a

  5. Phase separation (adjacent phases) y a b surface tension : R/2 R ln Z ab ( R ) 0 x Σ ab = − lim R →∞ 1 Z a ( R ) −R/2 a b boundary states : � | K ac K cb � + . . . 2 H �� dθ = e ± R | B ab ( ± R � 2 ) � = 2 π f ( θ ) | K ab ( θ ) � + � c a b � | K ac K ca � + . . . ] = e ± R 2 H [ | Ω a � + � | B a ( ± R 2 ) � = c a | f (0) | 2  Z ab ( R ) = � B ab ( R 2 ) | B ab ( − R 2 πm ab R e − m ab R √ 2 ) � ∼     = ⇒ Σ ab = m ab  Z a ( R ) = � B a ( R 2 ) | B a ( − R  2 ) � ∼ � Ω a | Ω a � = 1  

  6. magnetization profile : Z ab � B ab ( R 1 2 ) | σ ( x, 0) | B ab ( − R � σ ( x, 0) � ab = 2 ) � θ 12 ≡ θ 1 − θ 2 θ 2 θ 2 ∼ | f (0) | 2 � dθ 1 1 2 dθ 2 ab ( θ 1 | θ 2 ) e − m [(1+ 4 + 4 ) R − iθ 12 x ] 2 π F σ mR ≫ 1 Z ab 2 π a b a b F σ ab ( θ 1 | θ 2 ) ≡ � K ab ( θ 1 ) | σ (0 , 0) | K ab ( θ 2 ) � a b σ σ σ = + = i � σ � a −� σ � b + � ∞ n =0 c n θ n 12 + 2 π δ ( θ 12 ) � σ � a θ 12 − iǫ [Berg, Karowski, Weisz, ’78; Smirnov, 80’s; GD, Cardy, ’98] Does not require integrability � 2 m � σ ( x, 0) � ab = 1 2 [ � σ � a + � σ � b ] − 1 2 [ � σ � a − � σ � b ] erf( R x ) ⇒ � z πmR e − 2 mx 2 /R + . . . 0 dt e − t 2 � 2 2 + c 0 erf ( z ) ≡ √ π

  7. � 2 m � σ ( x, 0) � ab = 1 2 [ � σ � a + � σ � b ] − 1 2 [ � σ � a − � σ � b ] erf( R x ) πmR e − 2 mx 2 /R + . . . � 2 + c 0 � Ising: � σ � + = −� σ � − , c 0 = 0 (by parity); 2 m � σ � − + ∼ � σ � + erf( R x ) matches lattice result [Abraham, ’81] q-state Potts: 1.0 —– � σ 1 � 12 /M q = 3 0.8 σ c ( x ) = δ s ( x ) ,c − 1 /q , c = 1 , . . . , q 0.6 —– � σ 3 � 12 /M mR = 10 � σ c � a = ( qδ ac − 1) M 0.4 q − 1 0.2 c ab,c = [2 − q ( δ ac + δ bc )] B ( q ) 0 mx � 10 � 5 5 10 � 0.2 M M B (3) = 3 , B (4) = √ √ 4 3 3 � 0.4 • non-local (erf) term amounts to sharp separation between pure phases • local (gaussian) term sensitive to interface structure

  8. percolation: sites randomly occupied with probability p on the plane: infinite cluster for p > p c P =prob. site ∈ infinite cluster maps on q → 1 Potts on the strip, take only configurations s without clusters connecting left 0 x and right parts of the boundary P s ( x, 0)=prob. ( x, 0) ∈ cluster spanning at x < 0 ( p > p c ) � � πmR e − 2 mx 2 /R + · · · � 2 m � = P 2 1 − erf( R x ) − γ 2

  9. Passage probability and interface structure � + ∞ a b � σ ( x, 0) � ab = −∞ du σ ab ( x | u ) p ( u ) . . x u p ( u ) du = passage probability in ( u, u + du ) a b σ ab ( x | u ) = Θ( u − x ) � σ � a +Θ( x − u ) � σ � b + A 0 δ ( x − u )+ A 1 δ ′ ( x − u )+ . . . � 1 , x ≥ 0 Θ( x ) ≡ 0 , x < 0 πR e − 2 mu 2 /R , � 2 m A 0 = c 0 matches field theory for p ( u ) = m • local terms account for branching c a b

  10. for y � = 0 field theory leads to πR e − 2 mu 2 /Rρ 2 ( y ) � 2 m 1 ∀ | y | < R p ( u ; y ) = 2 as R → ∞ ρ ( y ) � 1 − ( y R/ 2 ) 2 ρ ( y ) = = ⇒ the interface behaves as a brownian bridge • brownian bridge property rigorously known for Ising and Potts [Greenberg, Joffe, ’05; Campanino, Joffe, Velenik, ’08] • field theory says that it holds for any interface between adja- cent phases

  11. Wetting is the ability of a phase to maintain contact with a surface phenomenological description in terms of contact angle θ c 0 < θ c < π : partial wetting θ c = 0 : complete wetting equilibrium condition at contact points known as Young’s law

  12. half plane : y B a = boundary condition at x = 0 breaking the symmetry in direction a 0 x � σ ( x, y ) � B a = B a � Ω | σ ( x, y ) | Ω � B a → � σ � a , x → ∞ H B a | Ω � B a = E B | Ω � B a H B a | K ba ( θ ) � B a = ( E B + m cosh θ ) | K ba ( θ ) � B a boundary condition changing fields : µ ab ( y ) switches from B a to B b a θ B a � Ω | µ ab ( y ) | K ba ( θ ) � B a = e − ym cosh θ F µ ( θ ) µ (y) ab b F µ ( θ ) = a θ + O ( θ 2 )

  13. pinned interfaces : µ (R/2) Z B aba = B a � Ω | µ ab ( R 2 ) µ ba ( − R a 2 ) | Ω � B a ab b | a | 2 e − mR � dθ 2 π |F µ ( θ ) | 2 e − mR cosh θ ∼ ∼ √ 2 π ( mR ) 3 / 2 2 µ (−R/2) ba � σ ( x, 0) � B aba = Z − 1 B aba B a � Ω | µ ab ( R 2 ) σ ( x, 0) µ ba ( − R 2 ) | Ω � B a θ 2 θ 2 � dθ 1 1 2 dθ 2 µ ( θ 2 ) e − m [(1+ 4 + 4 ) R − iθ 12 x ] 1 2 π F µ ( θ 1 ) F σ ab ( θ 1 | θ 2 ) F ∗ ∼ Z Baba 2 π � πR x e − 2 m R x 2 � � 2 m � 8 m ∼ � σ � b +( � σ � a −� σ � b ) erf( R x ) − mR, mx ≫ 1 , √ � � σ � a , x → ∞ � σ ( x, 0) � B aba → wall-interface distance ∼ R � σ � b , R → ∞ Ising: � σ � + = −� σ � − ; matches lattice result [Abraham, ’80]

  14. passage probability : � x � ∞ � σ ( x, 0) � B aba ∼ � σ � a 0 du p ( u ) + � σ � b du p ( u ) , mx ≫ 1 x matches field theory for p � x � —– mR=2500 0.020 � 3 / 2 x 2 e − 2 mx 2 /R 4 � 2 m —– mR=5000 p ( x ) = √ π R 0.015 0.010 0.005 general result provided : mx 50 100 150 200 i) adjacent phases ii) no boundary bound states

  15. boundary bound states : b b g a a kink-boundary amplitude has pole at θ = iu θ ∼ iu g b u b | K ba ( θ ≃ iu ) � B a ∼ | Ω � B ′ a µ a µ E B ′ = E B + m cos u , 0 < u < π ab ab a b g ig F µ ( θ ≃ iu ) ≃ θ − iu B a � Ω | µ ab (0) | Ω � B ′ b a | Ω � B ′ a now leading as R → ∞ µ (R/2) 2 e − mR cos u ab � � Z B aba ∼ � B a � Ω | µ ab (0) | Ω � B ′ � � a � a µ a + O ( e − mR (1 − cos u ) ) (−R/2) � σ ( x, 0) � B aba = � σ ( x, 0) � B ′ ba � σ ( x ≫ 1 ⇒ mR diverges faster than 1 /u 2 m , 0) � B aba → � σ � a ∀ R

  16. field theory ← → wetting phenomenology dictionary : splitting and recombination of B ′ a ← → partial wetting u = contact angle a b E B ′ = E B + m cos u ← → Young’s condition u m (cos u − 1) = spreading coefficient u = 0 ← → complete wetting � dy φ (0 , y ) boundary interaction : u = u ( ( T c − T ) (1 − xφ ) ν λ ) λ u = 0 determines wetting transition temperature T w ( λ ) < T c

  17. Double interfaces suppose going from | Ω a � to | Ω b � requires two kinks Ω c Ω a Ω b � dθ 1 dθ 2 f acb ( θ 1 , θ 2 ) | K ac ( θ 1 ) K cb ( θ 2 ) � + . . . ] 2 ) � = e ± R 2 H [ | B ab ( ± R � c a b a b

  18. Ashkin-Teller σ 1 , σ 2 = ± 1 � H = − { J [ σ 1 ( x 1 ) σ 1 ( x 2 ) + σ 2 ( x 1 ) σ 2 ( x 2 )] + J 4 σ 1 ( x 1 ) σ 1 ( x 2 ) σ 2 ( x 1 ) σ 2 ( x 2 ) } � x 1 x 2 � (+−) (++) 4 degenerate vacua below T c scaling limit → sine-Gordon Σ (++)(+ − ) = m (−−) (−+) πβ 2  2 m sin J 4 > 0 2(8 π − β 2 ) ,  Σ (++)( −− ) = 2 m , J 4 ≤ 0  4 π β 2 = 1 − 2 tanh 2 J 4 π arcsin( tanh 2 J 4 − 1 ) on square lattice −+ −− ++ +− double interface between ( −− ) and (++) for J 4 ≤ 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend