phase retrieval using partial unitary sensing matrices
play

Phase Retrieval using Partial Unitary Sensing Matrices Rishabh - PowerPoint PPT Presentation

Phase Retrieval using Partial Unitary Sensing Matrices Rishabh Dudeja, Milad Bakhshizadeh, Junjie Ma, Arian Maleki 1 The Phase Retrieval Problem Recover unknown x from y = | Ax | x C n : signal vector. y R m :


  1. Phase Retrieval using Partial Unitary Sensing Matrices Rishabh Dudeja, Milad Bakhshizadeh, Junjie Ma, Arian Maleki 1

  2. The Phase Retrieval Problem ◮ Recover unknown x ⋆ from y = | Ax ⋆ | ◮ x ⋆ ∈ C n : signal vector. ◮ y ∈ R m : measurements. ◮ A : sensing matrix. ◮ δ = m/n : sampling ratio. 2

  3. Popular sensing matrices (in theoretical work) ◮ Popular sensing matrices: ∼ CN � 0 , 1 /n � i.i.d. ◮ Gaussian: A ij ◮ Coded diffraction pattern (CDP):   F D 1   . . A CDP =   . F D L ◮ D l = Diag ( e iφ ( l ) 1 , . . . e iφ ( l ) n ) ◮ F : Fourier matrix ◮ φ 1 , . . . , φ n : independent uniform phases ◮ Objective: Which matrix performs better from a purely theoretical standpoint? 3

  4. Flashback to compressed sensing: ◮ Performance of partial orthogonal versus Gaussian on LASSO ◮ Noiseless measurements: Same phase transition ◮ Noisy measurements: Partial orthogonal (Fourier) is better Related work: ◮ Originally observed Donoho, Tanner (2009) ◮ Phase transition analysis of Gaussian matrices Donoho, Tanner (2006) ◮ Mean square error calculation of Gaussian matrices Donohoa, Maleki, Montanari (2011), Bayati, Montanari (2011), Thrampoulidis, Oymak, Hassibi (2015) ◮ Mean square error calculation of partial orthogonal matrices: Tulino, Verdue, Caire (2013) , Thrampoulidis,Hassibi (2015) 4

  5. This talk : Spectral Estimator P. Netrapalli, P. Jain & S. Sanghavi (2015) ◮ The spectral estimator ˆ x : the leading eigenvector of the matrix = A H T A ∆ M ∆ ◮ T = Diag ( T ( y 1 ) , . . . T ( y m )) ◮ T : R ≥ 0 → [0 , 1] is a continuous trimming function 5

  6. This talk : Spectral Estimator P. Netrapalli, P. Jain & S. Sanghavi (2015) ◮ The spectral estimator ˆ x : the leading eigenvector of the matrix = A H T A ∆ M ∆ ◮ T = Diag ( T ( y 1 ) , . . . T ( y m )) ◮ T : R ≥ 0 → [0 , 1] is a continuous trimming function ◮ Population Behaviour: E M = λ 1 x ⋆ x H ⋆ + λ 2 ( I n − x ⋆ x H ⋆ ) ◮ λ 1 = E T | Z | 2 ◮ λ 2 = E T ◮ Z ∼ CN (0 , 1) √ ◮ T = T ( | Z | / δ ) . 5

  7. CDP behaves like oversampled Haar model ρ = 1 n | x H ⋆ ˆ x | . 1 0 . 9 0 . 8 0 . 7 0 . 6 ρ 2 0 . 5 0 . 4 0 . 3 0 . 2 T ( y ) = δy 2 / ( δy 2 + 0 . 1) √ T ( y ) = δy 2 / ( δy 2 + δ − 1) 0 . 1 δy 2 ≤ 2) / 4 T ( y ) = δy 2 I ( � 0 1 2 3 4 5 6 7 8 9 10 δ Oversampled Haar model explains CDP. 6

  8. Refined objective ◮ Compare the spectral estimator on ◮ Gaussian: A ij ∼ N (0 , 1 n ) . ◮ Oversampled Haar: H m ∼ Unif( U ( m )) , A = H m S m,n , y = | Ax ⋆ | . ◮ S m,n : selects the columns randomly. ◮ We use the asymptotic framework 1. m, n → ∞ 2. m/n → δ 7

  9. Sharp Asymptotics: Gaussian Sensing matrices Y. Lu and G. Li (2016) x H x ⋆ | 2 /n → ρ 2 > 0 . ◮ For δ > 1 : ∃ A spectral estimator ˆ x with | ˆ Y. Lu and G. Li (2016), M. Mondelli and A. Montanari (2017) ◮ Lu and Li also showed how ρ can be calculated. 8

  10. Main Result: oversampled Haar matrices Theorem: We have, � | x H x | 2 δ ⋆ ˆ 0 , ψ 1 ( τ ⋆ ) < δ − 1 , P → δ n ρ 2 T ( δ ) , ψ 1 ( τ ⋆ ) > δ − 1 , where, � � | Z | 2 E Λ( τ ) = τ − 1 − 1 /δ τ − T � � , τ ∈ [1 , ∞ ) . , ψ 1 ( τ ) = 1 E 1 E τ − T τ − T √ And, τ ⋆ = arg min Λ( τ ) , Z ∼ CN (0 , 1) , T = T ( | Z | / δ ) . 9

  11. Application: Optimal Trimming Functions ◮ Weak recovery threshold of T : = inf { δ ≥ 1 : ρ 2 ∆ T ( δ ) > 0 } δ T 10

  12. Application: Optimal Trimming Functions ◮ Weak recovery threshold of T : = inf { δ ≥ 1 : ρ 2 ∆ T ( δ ) > 0 } δ T ◮ For oversampled Haar measurement matrix, the optimal trimming function is 1 T ⋆ ( y ) = 1 − δy 2 , δ T ⋆ = 2 . 10

  13. Application: Optimal Trimming Functions ◮ Weak recovery threshold of T : = inf { δ ≥ 1 : ρ 2 ∆ T ( δ ) > 0 } δ T ◮ For oversampled Haar measurement matrix, the optimal trimming function is 1 T ⋆ ( y ) = 1 − δy 2 , δ T ⋆ = 2 . ◮ For Gaussian Sensing: δ T ⋆ = δ IT = 1 . Luo, Alghamadi and Lu (2018). 10

  14. Remainder of the Talk: A sketch of the proof. 11

  15. Main ingredient: free probability ◮ Classical probability theory: ◮ Consider two independent random variables X ∼ f X ( x ) , Y ∼ f Y ( y ) : ◮ f X + Y ( t ) = f X ( t ) ∗ f Y ( t ) = � f X ( z ) f Y ( t − z ) dz . ◮ f XY ( t ) = � z f X ( x ) f Y ( z x ) 1 | x | dx . 12

  16. Main ingredient: free probability ◮ Classical probability theory: ◮ Consider two independent random variables X ∼ f X ( x ) , Y ∼ f Y ( y ) : ◮ f X + Y ( t ) = f X ( t ) ∗ f Y ( t ) = � f X ( z ) f Y ( t − z ) dz . ◮ f XY ( t ) = � z f X ( x ) f Y ( z x ) 1 | x | dx . ◮ Free probability theory (for random matrices): ◮ Let X and Y be “freely independent” ◮ Let µ X ( z ) denote empirical spectral distribution of X ◮ µ X + Y ( z ) = µ x ( z ) ⊞ µ y ( z ) (free "additive" convolution) ◮ µ XY ( z ) = µ x ( z ) ⊠ µ y ( z ) (free "multiplicative" convolution) 12

  17. Step 1: Reduction to Rank-1 Additive Deformation ⇒ assume x ⋆ = √ n e 1 . ◮ Rotational invariance = ◮ Partition M : � � A H A H 1 T A 1 1 T A − 1 M = A H A H − 1 T A 1 − 1 T A − 1 13

  18. Step 1: Reduction to Rank-1 Additive Deformation ⇒ assume x ⋆ = √ n e 1 . ◮ Rotational invariance = ◮ Partition M : � � A H A H 1 T A 1 1 T A − 1 M = A H A H − 1 T A 1 − 1 T A − 1 Proposition (Lu & Li, 2017) : a ∈ R , µ ∈ R ≥ 0 . � � q H a , � M ( µ ) = P + µ qq H . M ( a ) = q P ∃ µ eff ( a ) : (a) λ 1 ( M ( a )) = λ 1 ( � M ( µ eff ( a ))) . 1 v 1 | 2 = d a λ 1 ( M ( a )) (b) | e H 13

  19. Step 1: Reduction to Rank-1 Additive Deformation ⇒ assume x ⋆ = √ n e 1 . ◮ Rotational invariance = ◮ Partition M : � � A H A H 1 T A 1 1 T A − 1 M = A H A H − 1 T A 1 − 1 T A − 1 Proposition (Lu & Li, 2017) : a ∈ R , µ ∈ R ≥ 0 . � � q H a , � M ( µ ) = P + µ qq H . M ( a ) = q P ∃ µ eff ( a ) : (a) λ 1 ( M ( a )) = λ 1 ( � M ( µ eff ( a ))) . 1 v 1 | 2 = d a λ 1 ( M ( a )) (b) | e H = λ 1 ( A H ∆ − 1 ( T + µ T A 1 ( T A 1 ) H ) A − 1 ) New Goal: Analyze L ( µ ) 13

  20. Why free probability? ◮ Analyze L ( µ ) = λ 1 ( A H − 1 ( T + µ T A 1 ( T A 1 ) H ) A − 1 ) . 14

  21. Why free probability? ◮ Analyze L ( µ ) = λ 1 ( A H − 1 ( T + µ T A 1 ( T A 1 ) H ) A − 1 ) . ◮ A − 1 , A 1 are dependent. 14

  22. Conclusion ◮ Compared oversampled Haar sensing matrix with Gaussian ◮ Oversampled Haar sensing matrix with optimal trimming: δ = 2 ◮ Gaussian matrix with optimal trimming: δ = 1 15

  23. Conclusion ◮ Compared oversampled Haar sensing matrix with Gaussian ◮ Oversampled Haar sensing matrix with optimal trimming: δ = 2 ◮ Gaussian matrix with optimal trimming: δ = 1 ◮ Oversampled Haar approximates the CDP sensing matrices 1 0 . 9 0 . 8 0 . 7 0 . 6 ρ 2 0 . 5 0 . 4 0 . 3 0 . 2 T ( y ) = δy 2 / ( δy 2 + 0 . 1) √ T ( y ) = δy 2 / ( δy 2 + δ − 1) 0 . 1 δy 2 ≤ 2) / 4 T ( y ) = δy 2 I ( � 0 1 2 3 4 5 6 7 8 9 10 δ Oversampled Haar model explains CDP; ρ = 1 n | x H ∗ ˆ x | . 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend