persistence of gaussian stationary processes
play

Persistence of Gaussian Stationary Processes Ohad Feldheim - PowerPoint PPT Presentation

Persistence of Gaussian Stationary Processes Ohad Feldheim (Stanford) Joint work with Naomi Feldheim (Stanford) Shahaf Nitzan (GeorgiaTech) UBC, Vancouver January, 2017 Gaussian stationary processes (GSP) For T { R , Z } , a random


  1. Persistence of Gaussian Stationary Processes Ohad Feldheim (Stanford) Joint work with Naomi Feldheim (Stanford) Shahaf Nitzan (GeorgiaTech) UBC, Vancouver January, 2017

  2. Gaussian stationary processes (GSP) For T ∈ { R , Z } , a random function f : T �→ R is a GSP if it is Gaussian: ( f ( x 1 ) ,... f ( x N )) ∼ N R N (0 , Σ x 1 ,..., x N ), Stationary (shift-invariant): ( f ( x 1 + s ) ,... f ( x N + s )) d ∼ ( f ( x 1 ) ,... f ( x N )), for all N ∈ N , x 1 ,..., x N , s ∈ T .

  3. Gaussian stationary processes (GSP) For T ∈ { R , Z } , a random function f : T �→ R is a GSP if it is Gaussian: ( f ( x 1 ) ,... f ( x N )) ∼ N R N (0 , Σ x 1 ,..., x N ), Stationary (shift-invariant): ( f ( x 1 + s ) ,... f ( x N + s )) d ∼ ( f ( x 1 ) ,... f ( x N )), for all N ∈ N , x 1 ,..., x N , s ∈ T . Motivation: Background noise for radio / cellular transmissions Ocean waves Vibrations of bridge strings / membranes Brain transmissions internet / car traffic ...

  4. Gaussian stationary processes (GSP) For T ∈ { R , Z } , a random function f : T �→ R is a GSP if it is Gaussian: ( f ( x 1 ) ,... f ( x N )) ∼ N R N (0 , Σ x 1 ,..., x N ), Stationary (shift-invariant): ( f ( x 1 + s ) ,... f ( x N + s )) d ∼ ( f ( x 1 ) ,... f ( x N )), for all N ∈ N , x 1 ,..., x N , s ∈ T . Covariance function r ( s , t ) = E ( f ( s ) f ( t )) = r ( s − t ) t , s ∈ T .

  5. Gaussian stationary processes (GSP) For T ∈ { R , Z } , a random function f : T �→ R is a GSP if it is Gaussian: ( f ( x 1 ) ,... f ( x N )) ∼ N R N (0 , Σ x 1 ,..., x N ), Stationary (shift-invariant): ( f ( x 1 + s ) ,... f ( x N + s )) d ∼ ( f ( x 1 ) ,... f ( x N )), for all N ∈ N , x 1 ,..., x N , s ∈ T . Covariance function r ( s , t ) = E ( f ( s ) f ( t )) = r ( s − t ) t , s ∈ T . Spectral measure By Bochner’s theorem there exists a finite, non-negative, symmetric measure ρ over T ∗ ( Z ∗ ≃ [ − π,π ] and R ∗ ≃ R ) s.t. � e − i λ t d ρ ( λ ) . r ( t ) = � ρ ( t ) = T ∗

  6. Gaussian stationary processes (GSP) For T ∈ { R , Z } , a random function f : T �→ R is a GSP if it is Gaussian: ( f ( x 1 ) ,... f ( x N )) ∼ N R N (0 , Σ x 1 ,..., x N ), Stationary (shift-invariant): ( f ( x 1 + s ) ,... f ( x N + s )) d ∼ ( f ( x 1 ) ,... f ( x N )), for all N ∈ N , x 1 ,..., x N , s ∈ T . Covariance function r ( s , t ) = E ( f ( s ) f ( t )) = r ( s − t ) t , s ∈ T . Spectral measure By Bochner’s theorem there exists a finite, non-negative, symmetric measure ρ over T ∗ ( Z ∗ ≃ [ − π,π ] and R ∗ ≃ R ) s.t. � e − i λ t d ρ ( λ ) . r ( t ) = � ρ ( t ) = T ∗ � | λ | δ d ρ ( λ ) < ∞ for some δ > 0. Assumption: (“finite polynomial moment” ⇒ r is Hölder contin.)

  7. Toy-Example Ia - Gaussian wave ζ j i.i.d. N (0 , 1) Covariance Kernel f ( x ) = ζ 0 sin( x )+ ζ 1 cos( x ) 1 0.8 r ( x ) = cos( x ) 0.6 0.4 ρ = 1 2 ( δ 1 + δ − 1 ) 0.2 0 −0.2 Three Sample Paths −0.4 −0.6 1 −0.8 −1 0.8 −10 −5 0 5 10 0.6 Spectral Measure 0.4 0.5 0.2 0.45 0 0.4 0.35 −0.2 0.3 −0.4 0.25 0.2 −0.6 0.15 −0.8 0.1 0.05 −1 0 1 2 3 4 5 6 7 8 9 10 0 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

  8. Toy-Example Ib - Almost periodic wave f ( x ) = ζ 0 sin( x )+ ζ 1 cos( x ) Covariance Kernel √ √ 1 + ζ 2 sin( 2 x )+ ζ 3 cos( 2 x ) 0.8 √ 0.6 r ( x ) =cos( x )+ cos( 2 x ) 0.4 � � 0.2 ρ = 1 δ 1 + δ − 1 + δ √ √ 2 + δ − 0 2 2 −0.2 −0.4 −0.6 Three Sample Paths −0.8 −1 2.5 −10 −8 −6 −4 −2 0 2 4 6 8 10 2 Spectral Measure 1.5 0.5 1 0.45 0.5 0.4 0.35 0 0.3 −0.5 0.25 −1 0.2 0.15 −1.5 0.1 −2 0.05 −2.5 0 0 1 2 3 4 5 6 7 8 9 10 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

  9. Example II - i.i.d. sequence f ( n ) = ζ n 1 0.8 0.6 r ( n ) = δ n , 0 0.4 0.2 d ρ ( λ ) = 1 2 π 1 I [ − π,π ] ( λ ) d λ 0 −0.2 −0.4 −0.6 Three Sample Paths −0.8 2 −1 −5 −4 −3 −2 −1 0 1 2 3 4 5 1.5 0.2 0.18 1 0.16 0.14 0.5 0.12 0.1 0 0.08 0.06 −0.5 0.04 −1 0.02 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 −1.5 0 1 2 3 4 5 6 7 8 9 10

  10. Example IIb - Sinc kernel � f ( n ) = ζ n sinc( x − n ) n ∈ N 1 r ( n ) = sin( π x ) 0.8 = sinc( x ) π x 0.6 d ρ ( λ ) = 1 0.4 2 π 1 I [ − π,π ] ( λ ) d λ 0.2 0 Three Sample Paths −0.2 2 −0.4 −5 −4 −3 −2 −1 0 1 2 3 4 5 1.5 0.2 0.18 1 0.16 0.14 0.5 0.12 0.1 0 0.08 0.06 −0.5 0.04 −1 0.02 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 −1.5 0 1 2 3 4 5 6 7 8 9 10

  11. Example III - Gaussian Covariance (Fock-Bargmann) � ζ n x n e − x 2 √ f ( x ) = Covariance Kernel 2 n ! 1 n ∈ N 0.9 r ( x ) = e − x 2 0.8 2 0.7 0.6 d ρ ( λ ) = √ π e − λ 2 0.5 2 d λ 0.4 0.3 0.2 Three Sample Paths 0.1 0 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 3 2 Spectral Measure 1 1.8 1.6 1.4 0 1.2 1 −1 0.8 0.6 −2 0.4 0.2 −3 0 0 1 2 3 4 5 6 7 8 9 10 −5 −4 −3 −2 −1 0 1 2 3 4 5

  12. Example IV - Exponential Covariance (Ornstein-Uhlenbeck) r ( x ) = e −| x | Covariance Kernel 1 2 0.9 d ρ ( λ ) = λ 2 + 1 d λ 0.8 0.7 0.6 0.5 0.4 0.3 Three Sample Paths 0.2 0.1 3 0 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2 Spectral Measure 1 2 1.8 1.6 0 1.4 1.2 −1 1 0.8 0.6 −2 0.4 0.2 −3 0 1 2 3 4 5 6 7 8 9 10 0 −5 −4 −3 −2 −1 0 1 2 3 4 5

  13. Persistence Probability Persistence The persistence probability of a stochastic process f over a level ℓ ∈ R in the time interval (0 , N ] is: � � P f ( N ) := P f ( x ) > ℓ, ∀ x ∈ (0 , N ] . Picture of persistence

  14. Persistence Probability Persistence (above the mean) The persistence probability of a centered stochastic process f in the time interval (0 , N ] is: � � P f ( N ) := P f ( x ) > 0 , ∀ x ∈ (0 , N ] . Picture of persistence

  15. Persistence Probability Persistence (above the mean) The persistence probability of a centered stochastic process f in the time interval (0 , N ] is: � � P f ( N ) := P f ( x ) > 0 , ∀ x ∈ (0 , N ] . Picture of persistence Question: For a GSP f , what is the behavior of P f ( N ) as N → ∞ ? Guess: “typically” P ( t ) ≍ e − θ t .

  16. Persistence Probability Persistence (above the mean) The persistence probability of a centered stochastic process f in the time interval (0 , N ] is: � � P f ( N ) := P f ( x ) > 0 , ∀ x ∈ (0 , N ] . Picture of persistence Question: For a GSP f , what is the behavior of P f ( N ) as N → ∞ ? Guess: “typically” P ( t ) ≍ e − θ t . Toy Examples P X ( N ) = 2 − N ( X n ) n ∈ Z i.i.d. ( N +1)! ≍ e − N log N 1 Y n = X n +1 − X n P Y ( N ) = P Z ( N ) = P ( Z 0 > 0) = 1 Z n ≡ Z 0 2 .

  17. History and Motivation Engineering and Applied Mathematics (1940–1970) 1944 Rice - “Mathematical Analysis of Random Noise” . Mean number of level-crossings (Rice formula) Behavior of P ( t ) for t ≪ 1 ( short range ). 1962 Slepian - “One-sided barrier problem” . Slepian’s Inequality: r 1 ( x ) ≥ r 2 ( x ) ⇒ P 1 ( N ) ≥ P 2 ( N ) . specific cases 1962 Newell & Rosenblatt If r ( x ) → 0 as x → ∞ , then P ( N ) = o ( N − α ) for any α > 0. � e − CN if α > 1 If | r ( x ) | < ax − α then P ( N ) ≤ e − CN / log N if α = 1 e − CN α if 0 < α < 1 √ N log N ≫ e − CN ( r ( x ) ≍ x − 1 / 2 ). examples for P ( t ) > e − C

  18. History and Motivation Engineering and Applied Mathematics (1940–1970) 1944 Rice - “Mathematical Analysis of Random Noise” . Mean number of level-crossings (Rice formula) Behavior of P ( t ) for t ≪ 1 ( short range ). 1962 Slepian - “One-sided barrier problem” . Slepian’s Inequality: r 1 ( x ) ≥ r 2 ( x ) ⇒ P 1 ( N ) ≥ P 2 ( N ) . specific cases 1962 Newell & Rosenblatt If r ( x ) → 0 as x → ∞ , then P ( N ) = o ( N − α ) for any α > 0. � e − CN if α > 1 If | r ( x ) | < ax − α then P ( N ) ≤ e − CN / log N if α = 1 e − CN α if 0 < α < 1 √ N log N ≫ e − CN ( r ( x ) ≍ x − 1 / 2 ). examples for P ( t ) > e − C There are parallel independent results from the Soviet Union (e.g. Piterbarg, Kolmogorov).

  19. History and Motivation Engineering and Applied Mathematics (1940–1970) 1944 Rice - “Mathematical Analysis of Random Noise” . Mean number of level-crossings (Rice formula) Behavior of P ( t ) for t ≪ 1 ( short range ). 1962 Slepian - “One-sided barrier problem” . Slepian’s Inequality: r 1 ( x ) ≥ r 2 ( x ) ⇒ P 1 ( N ) ≥ P 2 ( N ) . specific cases 1962 Newell & Rosenblatt If r ( x ) → 0 as x → ∞ , then P ( N ) = o ( N − α ) for any α > 0. � e − CN if α > 1 If | r ( x ) | < ax − α then P ( N ) ≤ e − CN / log N if α = 1 e − CN α if 0 < α < 1 √ N log N ≫ e − CN ( r ( x ) ≍ x − 1 / 2 ). examples for P ( t ) > e − C There are parallel independent results from the Soviet Union (e.g. Piterbarg, Kolmogorov). Applicable mainly when r is non-negative or summable.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend