partitions properties of separable metric spaces
play

Partitions properties of separable metric spaces L. Nguyen Van Th e - PowerPoint PPT Presentation

Partitions properties of separable metric spaces L. Nguyen Van Th e Universit e Aix-Marseille May 2011 L. Nguyen Van Th e (Universit e Aix-Marseille) Partitions of separable metric spaces May 2011 1 / 12 Milmans theorem L.


  1. Partitions properties of separable metric spaces L. Nguyen Van Th´ e Universit´ e Aix-Marseille May 2011 L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 1 / 12

  2. Milman’s theorem L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 2 / 12

  3. Milman’s theorem S n : the unit sphere of Euclidean R n . S ∞ : the unit sphere of ℓ 2 (the separable, infinite-dimensional, real Hilbert space). L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 2 / 12

  4. Milman’s theorem S n : the unit sphere of Euclidean R n . S ∞ : the unit sphere of ℓ 2 (the separable, infinite-dimensional, real Hilbert space). Theorem (Milman, 71) Let n > 0 , ε > 0 . Then there is N ∈ N such that whenever S N = R ∪ B, we have S n ֒ → ( R ) ε or S n ֒ → ( B ) ε . In symbols: S N → ( S n ) 2 . ε ∀ n ∈ N ∃ N ∈ N ∀ ε > 0 − L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 2 / 12

  5. Milman’s theorem S n : the unit sphere of Euclidean R n . S ∞ : the unit sphere of ℓ 2 (the separable, infinite-dimensional, real Hilbert space). Theorem (Milman, 71) Let n > 0 , ε > 0 . Then there is N ∈ N such that whenever S N = R ∪ B, we have S n ֒ → ( R ) ε or S n ֒ → ( B ) ε . In symbols: S N → ( S n ) 2 . ε ∀ n ∈ N ∃ N ∈ N ∀ ε > 0 − Remark: This is implied by: Theorem (Matouˇ sek-R¨ odl, 95) Let X ⊂ S ∞ finite, affinely independent, with circumradius < 1 . Then there is a finite Y ⊂ S ∞ , affinely independent, with circumradius < 1 such that Y − → ( X ) 2 . L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 2 / 12

  6. The distortion problem L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 3 / 12

  7. The distortion problem Question Does the following version of Milman’s result hold: S ∞ → ( S ∞ ) 2 ? ε ∀ ε > 0 − (Is S ∞ approximately indivisible?) L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 3 / 12

  8. The distortion problem Question Does the following version of Milman’s result hold: S ∞ → ( S ∞ ) 2 ? ε ∀ ε > 0 − (Is S ∞ approximately indivisible?) Theorem (Odell-Schlumprecht, 94) No. L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 3 / 12

  9. The distortion problem Question Does the following version of Milman’s result hold: S ∞ → ( S ∞ ) 2 ? ε ∀ ε > 0 − (Is S ∞ approximately indivisible?) Theorem (Odell-Schlumprecht, 94) No. Question Is there a direct, geometric or combinatorial, argument? L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 3 / 12

  10. The Urysohn sphere L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 4 / 12

  11. The Urysohn sphere Theorem (Urysohn, 27) Up to isometry, there is a unique complete separable ultrahomogeneous metric space into which any separable metric space embeds. L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 4 / 12

  12. The Urysohn sphere Theorem (Urysohn, 27) Up to isometry, there is a unique complete separable ultrahomogeneous metric space into which any separable metric space embeds. Definition The space above is the Urysohn space, denoted U . Up to isometry, there is a unique sphere of diameter 1 in U . The corresponding metric space is the Urysohn sphere, denoted S . L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 4 / 12

  13. The Urysohn sphere Theorem (Urysohn, 27) Up to isometry, there is a unique complete separable ultrahomogeneous metric space into which any separable metric space embeds. Definition The space above is the Urysohn space, denoted U . Up to isometry, there is a unique sphere of diameter 1 in U . The corresponding metric space is the Urysohn sphere, denoted S . Remark ◮ For some finite approximate Ramsey type properties, U and ℓ 2 behave similarly. So do S and S ∞ (Gromov-Milman, 84 ; Pestov, 02). ◮ For exact finite Ramsey properties, the analogy is not clear yet (Kechris-Pestov-Todorcevic, Neˇ setˇ ril, 05). L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 4 / 12

  14. Partitions of S L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 5 / 12

  15. Partitions of S Theorem (Lopez-Abad - NVT - Sauer, 09) Let ε > 0 . Then: ε S − → ( S ) 2 . L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 5 / 12

  16. Partitions of S Theorem (Lopez-Abad - NVT - Sauer, 09) Let ε > 0 . Then: ε S − → ( S ) 2 . Corollary Let ε > 0 . Then: ε − → ( S C ([0 , 1]) ) 2 . S C ([0 , 1]) Note: in general, cannot require the copy to be linear. L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 5 / 12

  17. How the proof went L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 6 / 12

  18. How the proof went Proposition ◮ S is the unique complete separable metric space with distances in [0 , 1] into which any separable metric space with distances in [0 , 1] embeds. ◮ S has a countable rational analogue: the space S Q , unique countable ultrahomogeneous with distances in [0 , 1] ∩ Q into which any countable metric space with distances in [0 , 1] ∩ Q embeds. ◮ S Q embeds densely into S . L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 6 / 12

  19. How the proof went Proposition ◮ S is the unique complete separable metric space with distances in [0 , 1] into which any separable metric space with distances in [0 , 1] embeds. ◮ S has a countable rational analogue: the space S Q , unique countable ultrahomogeneous with distances in [0 , 1] ∩ Q into which any countable metric space with distances in [0 , 1] ∩ Q embeds. ◮ S Q embeds densely into S . Question Do we have S Q − → ( S Q ) 2 ? (Is S Q indivisible?) L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 6 / 12

  20. How the proof went Proposition ◮ S is the unique complete separable metric space with distances in [0 , 1] into which any separable metric space with distances in [0 , 1] embeds. ◮ S has a countable rational analogue: the space S Q , unique countable ultrahomogeneous with distances in [0 , 1] ∩ Q into which any countable metric space with distances in [0 , 1] ∩ Q embeds. ◮ S Q embeds densely into S . Question Do we have S Q − → ( S Q ) 2 ? (Is S Q indivisible?) Theorem (Delhomm´ e-Laflamme-Pouzet-Sauer, 07) No. L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 6 / 12

  21. Remark Crucial fact: the distance set of S Q is too rich. L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 7 / 12

  22. Remark Crucial fact: the distance set of S Q is too rich. Proposition ◮ Up to isometry, there is a unique countable ultrahomogeneous metric space with distances in { 1 , . . . , m } into which every countable metric space with distances in { 1 , . . . , m } embeds. ( U m , the Urysohn space with distances in { 1 , . . . , m } ) ◮ U m / m embeds as a 1 / 2 m-dense subspace of S . L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 7 / 12

  23. Remark Crucial fact: the distance set of S Q is too rich. Proposition ◮ Up to isometry, there is a unique countable ultrahomogeneous metric space with distances in { 1 , . . . , m } into which every countable metric space with distances in { 1 , . . . , m } embeds. ( U m , the Urysohn space with distances in { 1 , . . . , m } ) ◮ U m / m embeds as a 1 / 2 m-dense subspace of S . Theorem (Lopez-Abad - NVT, 08) TFAE: ε 1. ∀ ε > 0 S − → ( S ) 2 . 2. ∀ m ∈ N U m − → ( U m ) 2 . L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 7 / 12

  24. Remark Crucial fact: the distance set of S Q is too rich. Proposition ◮ Up to isometry, there is a unique countable ultrahomogeneous metric space with distances in { 1 , . . . , m } into which every countable metric space with distances in { 1 , . . . , m } embeds. ( U m , the Urysohn space with distances in { 1 , . . . , m } ) ◮ U m / m embeds as a 1 / 2 m-dense subspace of S . Theorem (Lopez-Abad - NVT, 08) TFAE: ε 1. ∀ ε > 0 S − → ( S ) 2 . 2. ∀ m ∈ N U m − → ( U m ) 2 . Theorem (NVT - Sauer, 09) ∀ m ∈ N U m − → ( U m ) 2 . L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 7 / 12

  25. Remark The spaces U m are particular cases of spaces of the following: L. Nguyen Van Th´ e (Universit´ e Aix-Marseille) Partitions of separable metric spaces May 2011 8 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend