partial mds codes with local regeneration
play

Partial MDS Codes with Local Regeneration Lukas Holzbaur , Sven - PowerPoint PPT Presentation

Partial MDS Codes with Local Regeneration Lukas Holzbaur , Sven Puchinger, Eitan Yaakobi, Antonia Wachter-Zeh Technical University of Munich Institute for Communications Engineering Introduction Large scale distributed storage systems need to


  1. Partial MDS Codes with Local Regeneration Lukas Holzbaur , Sven Puchinger, Eitan Yaakobi, Antonia Wachter-Zeh Technical University of Munich Institute for Communications Engineering

  2. Introduction • Large scale distributed storage systems need to be efficiently repairable • Two important measures of efficiency: 1 Kamath, Govinda M., et al. "Codes with local regeneration and erasure correction." IEEE Transactions on Information Theory 60.8 (2014): 4637-4660. 2 Rawat, Ankit Singh, et al. "Optimal locally repairable and secure codes for distributed storage systems." IEEE Transactions on Information Theory 60.1 (2013): 212-236. 3 Krishnan, M. Nikhil, and P . Vijay Kumar. "Codes with Combined Locality and Regeneration Having Optimal Rate, d min and Linear Field Size." 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. 4 Calis, Gokhan, and O. Ozan Koyluoglu. "A general construction for PMDS codes." IEEE Communications Letters 21.3 (2016): 452-455. Lukas Holzbaur (TUM) 2

  3. Introduction • Large scale distributed storage systems need to be efficiently repairable • Two important measures of efficiency: ◮ Locality: Number of nodes involved in repair → LRCs / PMDS codes 1 Kamath, Govinda M., et al. "Codes with local regeneration and erasure correction." IEEE Transactions on Information Theory 60.8 (2014): 4637-4660. 2 Rawat, Ankit Singh, et al. "Optimal locally repairable and secure codes for distributed storage systems." IEEE Transactions on Information Theory 60.1 (2013): 212-236. 3 Krishnan, M. Nikhil, and P . Vijay Kumar. "Codes with Combined Locality and Regeneration Having Optimal Rate, d min and Linear Field Size." 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. 4 Calis, Gokhan, and O. Ozan Koyluoglu. "A general construction for PMDS codes." IEEE Communications Letters 21.3 (2016): 452-455. Lukas Holzbaur (TUM) 2

  4. Introduction • Large scale distributed storage systems need to be efficiently repairable • Two important measures of efficiency: ◮ Locality: Number of nodes involved in repair → LRCs / PMDS codes ◮ Repair Bandwidth: Amount of data transmitted for repair → Regenerating codes 1 Kamath, Govinda M., et al. "Codes with local regeneration and erasure correction." IEEE Transactions on Information Theory 60.8 (2014): 4637-4660. 2 Rawat, Ankit Singh, et al. "Optimal locally repairable and secure codes for distributed storage systems." IEEE Transactions on Information Theory 60.1 (2013): 212-236. 3 Krishnan, M. Nikhil, and P . Vijay Kumar. "Codes with Combined Locality and Regeneration Having Optimal Rate, d min and Linear Field Size." 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. 4 Calis, Gokhan, and O. Ozan Koyluoglu. "A general construction for PMDS codes." IEEE Communications Letters 21.3 (2016): 452-455. Lukas Holzbaur (TUM) 2

  5. Introduction • Large scale distributed storage systems need to be efficiently repairable • Two important measures of efficiency: ◮ Locality: Number of nodes involved in repair → LRCs / PMDS codes ◮ Repair Bandwidth: Amount of data transmitted for repair → Regenerating codes • Several constructions of locally regenerating codes are known 123 But: Only one with PMDS 24 property, for which the field size is exponential in the length 1 Kamath, Govinda M., et al. "Codes with local regeneration and erasure correction." IEEE Transactions on Information Theory 60.8 (2014): 4637-4660. 2 Rawat, Ankit Singh, et al. "Optimal locally repairable and secure codes for distributed storage systems." IEEE Transactions on Information Theory 60.1 (2013): 212-236. 3 Krishnan, M. Nikhil, and P . Vijay Kumar. "Codes with Combined Locality and Regeneration Having Optimal Rate, d min and Linear Field Size." 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. 4 Calis, Gokhan, and O. Ozan Koyluoglu. "A general construction for PMDS codes." IEEE Communications Letters 21.3 (2016): 452-455. Lukas Holzbaur (TUM) 2

  6. Minimum Storage Regenerating (MSR) Codes • Storage system storing ℓ ( n − r ) data symbols on n nodes using [ n , n − r ; ℓ ] code ⇒ r “redundancy nodes”; Each node stores ℓ symbols Example: n = 8, r = 3 1 2 3 4 5 6 7 8 5 Dimakis, Alexandros G., et al. "Network coding for distributed storage systems." IEEE transactions on information theory 56.9 (2010): 4539-4551. Lukas Holzbaur (TUM) 3

  7. Minimum Storage Regenerating (MSR) Codes • Storage system storing ℓ ( n − r ) data symbols on n nodes using [ n , n − r ; ℓ ] code ⇒ r “redundancy nodes”; Each node stores ℓ symbols • Minimum Storage Regenerating (MSR) Codes ◮ Maximum Distance Separable (MDS) Code ◮ The repair bandwidth is 5 ( n − 1 ) · ℓ r Example: n = 8, r = 3 1 2 3 4 5 6 7 8 5 Dimakis, Alexandros G., et al. "Network coding for distributed storage systems." IEEE transactions on information theory 56.9 (2010): 4539-4551. Lukas Holzbaur (TUM) 3

  8. Minimum Storage Regenerating (MSR) Codes • Storage system storing ℓ ( n − r ) data symbols on n nodes using [ n , n − r ; ℓ ] code ⇒ r “redundancy nodes”; Each node stores ℓ symbols • Minimum Storage Regenerating (MSR) Codes ◮ Maximum Distance Separable (MDS) Code ◮ The repair bandwidth is 5 ( n − 1 ) · ℓ r Example: n = 8, r = 3 1 2 3 4 5 6 7 8 5 Dimakis, Alexandros G., et al. "Network coding for distributed storage systems." IEEE transactions on information theory 56.9 (2010): 4539-4551. Lukas Holzbaur (TUM) 3

  9. Minimum Storage Regenerating (MSR) Codes • Storage system storing ℓ ( n − r ) data symbols on n nodes using [ n , n − r ; ℓ ] code ⇒ r “redundancy nodes”; Each node stores ℓ symbols • Minimum Storage Regenerating (MSR) Codes ◮ Maximum Distance Separable (MDS) Code ◮ The repair bandwidth is 5 ( n − 1 ) · ℓ r Example: n = 8, r = 3 1 2 3 4 5 6 7 8 4 ′ 5 Dimakis, Alexandros G., et al. "Network coding for distributed storage systems." IEEE transactions on information theory 56.9 (2010): 4539-4551. Lukas Holzbaur (TUM) 3

  10. Minimum Storage Regenerating (MSR) Codes • Storage system storing ℓ ( n − r ) data symbols on n nodes using [ n , n − r ; ℓ ] code ⇒ r “redundancy nodes”; Each node stores ℓ symbols • Minimum Storage Regenerating (MSR) Codes ◮ Maximum Distance Separable (MDS) Code ◮ The repair bandwidth is 5 ( n − 1 ) · ℓ r Example: n = 8, r = 3 1 2 3 4 5 6 7 8 ℓ Repair Bandwidth: ( n − r ) · ℓ 4 ′ 5 Dimakis, Alexandros G., et al. "Network coding for distributed storage systems." IEEE transactions on information theory 56.9 (2010): 4539-4551. Lukas Holzbaur (TUM) 3

  11. Minimum Storage Regenerating (MSR) Codes • Storage system storing ℓ ( n − r ) data symbols on n nodes using [ n , n − r ; ℓ ] code ⇒ r “redundancy nodes”; Each node stores ℓ symbols • Minimum Storage Regenerating (MSR) Codes ◮ Maximum Distance Separable (MDS) Code ◮ The repair bandwidth is 5 ( n − 1 ) · ℓ r Example: n = 8, r = 3 1 2 3 4 5 6 7 8 ℓ r Repair Bandwidth: ( n − 1 ) · ℓ r 4 ′ 5 Dimakis, Alexandros G., et al. "Network coding for distributed storage systems." IEEE transactions on information theory 56.9 (2010): 4539-4551. Lukas Holzbaur (TUM) 3

  12. Ye-Barg MSR Codes 6 Construction: Ye-Barg MSR Codes, Construction 1; Ye et al. 6 Let C ⊂ F q be an [ n , n − r ; ℓ ] array code over F q , where q ≥ rn . Let { β i , j } i ∈ [ n ] , j ∈ [ r ] be a set of rn distinct elements of F q . Then each codeword is an array with ℓ = r n rows and n columns, where the a -th row fulfills the parity check equations   1 1 . . . 1 β 1 , a 1 β 2 , a 2 . . . β n , a n H ( a ) =    ,   . . . . . .   . . .  β r − 1 1 , a 1 β r − 1 2 , a 2 . . . β r − 1 n , a n for a ∈ [ 0 , ℓ − 1 ] and a = � n i = 1 a i r i − 1 . 6 Ye, Min, and Alexander Barg. "Explicit constructions of high-rate MDS array codes with optimal repair bandwidth." IEEE Transactions on Information Theory 63.4 (2017): 2001-2014. Lukas Holzbaur (TUM) 4

  13. Ye-Barg MSR Codes 6 Construction: Ye-Barg MSR Codes, Construction 1; Ye et al. 6 Let C ⊂ F q be an [ n , n − r ; ℓ ] array code over F q , where q ≥ rn . Let { β i , j } i ∈ [ n ] , j ∈ [ r ] be a set of rn distinct elements of F q . Then each codeword is an array with ℓ = r n rows and n columns, where the a -th row fulfills the parity check equations   1 1 . . . 1 β 1 , a 1 β 2 , a 2 . . . β n , a n H ( a ) =    ,   . . . . . .   . . .  β r − 1 1 , a 1 β r − 1 2 , a 2 . . . β r − 1 n , a n for a ∈ [ 0 , ℓ − 1 ] and a = � n i = 1 a i r i − 1 . 6 Ye, Min, and Alexander Barg. "Explicit constructions of high-rate MDS array codes with optimal repair bandwidth." IEEE Transactions on Information Theory 63.4 (2017): 2001-2014. Lukas Holzbaur (TUM) 4

  14. Ye-Barg MSR Codes 6 Parity check matrix of row a   1 1 . . . 1 β 1 , a 1 β 2 , a 2 . . . β n , a n H ( a ) =     . . . . . .   . . .   β r − 1 1 , a 1 β r − 1 2 , a 2 . . . β r − 1 n , a n 6 Ye, Min, and Alexander Barg. "Explicit constructions of high-rate MDS array codes with optimal repair bandwidth." IEEE Transactions on Information Theory 63.4 (2017): 2001-2014. Lukas Holzbaur (TUM) 5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend