param etric an d kin etic min im um span n in g trees
play

Param etric an d Kin etic Min im um Span n in g Trees Pan kaj K. - PDF document

Param etric an d Kin etic Min im um Span n in g Trees Pan kaj K. Agarwal David Eppstein Leon idas J. Guibas Mon ika R. Hen zin ger 1 Param etric Min im um Span n in g Tree: Given graph, edges labeled by lin ear fun ction s 2


  1. Param etric an d Kin etic Min im um Span n in g Trees Pan kaj K. Agarwal David Eppstein Leon idas J. Guibas Mon ika R. Hen zin ger 1

  2. Param etric Min im um Span n in g Tree: Given graph, edges labeled by lin ear fun ction s λ − λ 2 3 − λ 3 + λ Fin d MST for each possible value of λ λ < −2 −2 < λ < −1 −1 < λ < 1 1 < λ < 2 2 < λ 5 + 2λ 3 + λ 2 3 − λ 5 − 2λ

  3. Geom etric In terpretation : Poin t (-B,A) for tree w/ weight A+ B λ 6+λ 6−λ 5+2λ 5 5−2λ λ=1.5 3+λ 3−λ 2 Then MST( λ )= tan gen t to lin e w/ slope λ so param etric MST = lower con vex hull

  4. Application s For any quasicon cave fun ction f ( A , B ) optim um tree m ust be a con vex hull vertex Tree w/ m in im um cost-reliability ratio ( A = cost, B = − log probability all edges exist): f ( A , B ) = A exp ( B ) Tree w/ m in im um varian ce in total weight (if edge weights in depen den t ran dom variables): f ( A , B ) = A − B 2 Tree with high probability of low total weight (if edge weights in depen den t Gaussian variables): √ f ( A , B ) = A + B So each of these optim a can be foun d from param etric MST solution 2

  5. Previous Results on Param etric MST Num ber of breakpoin ts: • O ( m n 1 / 3 ) [Dey 1997] • Ω ( m α ( n )) [Eppstein 1995] Tim e to com pute all trees: • O ( m n log n ) [Fern ´ an dez-Baca, Slutzki, Eppstein 1996] 3

  6. Dyn am ic Min im um Span n in g Tree An altern ate form of tim e-varyin g data: Weighted graph subject to discrete updates (like param etric w/ piecewise con stan t fun ction s) Many algorithm s kn own [Sleator, Tarjan 1983] [Frederickson 1985] [Eppstein 1991] [Eppstein , Galil, Italian o, Nissen zweig 1992] [Eppstein , Galil, Italian o, Spen cer 1993] [Hen zin ger, Kin g 1997] [Holm , de Lichten berg, Thorup 1998] Curren t best tim e: O ( log 4 n ) per update better for restricted updates or plan ar graphs Idea: apply dyn am ic graph algorithm techn iques to param etric MST problem 4

  7. How to com bin e param etric an d dyn am ic? Kin etic Algorithm s! In terpret λ as tim e param eter start with param etric problem , sm all λ in crease λ an d perform updates m ain tain in g correct MST at each poin t in process Idea: m odel short-term predictability an d lon g-term un predictability of real-world application s Two kin ds of updates possible: structural: edge in sertion s an d deletion s functional: relabel existin g edge w/ n ew fun ction 5

  8. Other Kin etic Algorithm s [Basch, Guibas, Hershberger 1997] [Basch, Guibas, Zhan g 1997] [Guibas 1998] [Agarwal, Erickson , Guibas 1998] [Basch, Erickson , Guibas, Hershberger, Zhan g 1999] Basic data structures (Priority queue) Com putation al geom etry (Con vex hull, closest pair, bin ary space partition , polygon in tersection ) Typical tim e boun ds are polylog × worst case n um ber of chan ges to solution 6

  9. New Results Gen eral graphs: • O ( m 2 / 3 log 4 / 3 m ) per output chan ge • O ( n 2 / 3 log 4 / 3 n ) tim es worst case # chan ges Min or-closed graph fam ilies (in cludin g plan ar graphs): • O ( n 1 / 2 log 3 / 2 n ) per output chan ge Min or-closed fam ilies with on ly fun ction al updates: • O ( n 3 / 2 ) preprocessin g (n on plan ar graphs on ly) • O ( n 1 / 4 log 3 / 2 n ) tim es worst case # chan ges Som e ran dom ized im provem en ts to polylogs 7

  10. Idea I: Clusterin g Expan d vertices so graph has degree three, then ... Group MST in to k clusters of O( n/ k ) edges, at m ost two edges crossin g each cluster boun dary [Frederickson 1985] Form bun dles of n on -tree edges, accordin g to the clusters con tain in g their en dpoin ts adjust clusters as MST chan ges

  11. Classification of MST chan ges MST always chan ges by swap: in sert n on -tree edge, delete tree edge Three types of swap: • In tra-cluster swap: tree edge belon gs to cluster con tain in g both n on -tree edge en dpoin ts • Dual-cluster swap: tree edge belon gs to cluster con tain in g both n on -tree edge en dpoin ts • In ter-cluster swap: tree edge an d n on -tree edge are in disjoin t clusters 8

  12. Fin din g In tra-Cluster Swaps Use Megiddo’s param etric search to fin d last value of λ for which the cluster has sam e MST Decision oracle is (static) MST algorithm Tim e: ˜ O ( m / k ) per chan ged cluster Each update chan ges O ( 1 ) clusters so ˜ O ( m / k ) total 9

  13. Fin din g In ter-Cluster Swaps Collapse each bun dle or cluster to superedge Weight of bun dle superedge = m in in bun dle Weight of cluster superedge = m ax in path Han dle weight queries usin g con vex hull of coefficien ts of edge labels in bun dle or cluster Fin d swap by param etric search in collapsed graph Tim e for param etric search: ˜ O ( # bun dles) Tim e to rebuild con vex hulls: ˜ O ( m / k ) per chan ged cluster 10

  14. Fin din g Dual-Cluster Swaps “ Am bivalen t data structure” [Frederickson 1997] For each n on -tree edge en dpoin t, there are two tree paths in side the cluster to the two cluster exits. Non -tree edge stores a can didate swap per exit Foun d by traversin g MST within cluster queryin g dyn am ic con vex hull of path edges Each bun dle stores a can didate swap per exit the best am on g all swaps stored by its edges Best dual-cluster swap foun d by checkin g which can didate is correct for each bun dle, pickin g the best of the correct can didates Tim e to update edge an d bun dle can didates: ˜ O ( m / k ) per chan ged cluster Tim e to fin d best swap: ˜ O ( # bun dles) 11

  15. An alysis of Clusterin g Gen eral graphs: O ( m / k + k 2 ) Total tim e ˜ O ( m 1 / 3 ) Optim al k = ˜ O ( m 2 / 3 ) per MST chan ge ˜ Sparse (m in or-closed) graph fam ilies: Total tim e ˜ O ( n / k + k ) O ( n 1 / 2 ) Optim al k = ˜ O ( n 1 / 2 ) per MST chan ge ˜ 12

  16. Idea II: Sparsification [Eppstein , Galil, Italian o, Nissen zweig 1992] [Fern ´ an dez-Baca, Slutzki, Eppstein 1996] Split edges of graph in to two subsets G = G 1 ∪ G 2 Main tain MST of each subset (two sm aller kin etic problem s) Com bin e to get MST of overall graph (on e sparse structurally kin etic problem ) MST ( G ) = MST ( T 1 ∪ T 2 ) 13

  17. Sparsification An alysis Replaces factors of m by factors of n in any gen eral graph MST algorithm But subproblem s chan ges m ay n ot propagate to global MST so also replaces factors of actual MST chan ges with worst-case # chan ges Therefore: gen eral graph kin etic MST O ( n 2 / 3 ) tim es worst-case # chan ges ˜ 14

  18. Separator Based Sparsification [Eppstein , Galil, Italian o, Spen cer 1993] Given functionally kin etic problem Form separator decom position of sparse graph Solve MST problem s on each side of separator (two sm aller fun ction ally kin etic problem s) Use solution s to form com pact certificate (graph with O ( √ n ) vertices havin g sam e kin etic behavior as origin al subgraph) Com bin e certificates (on e very sm all structurally kin etic problem ) O ( n 1 / 4 ) per worst-case chan ge Total tim e: ˜ 15

  19. Con clusion s an d Open Problem s New kin etic MST algorithm s Som e im provem en t to param etric MST especially in the plan ar case (n ow O ( n 19 / 12 ) ) but for gen eral graphs, still n ot o ( m n ) Plan ar graph algorithm uses clusterin g in sparsified subproblem s — can we in stead use sparsification recursively? Geom etric kin etic MST? Edge weights becom e quadratic in stead of lin ear 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend