parallel numerical solution of intracellular calcium
play

Parallel Numerical Solution of Intracellular Calcium Dynamics - PowerPoint PPT Presentation

Parallel Numerical Solution of Intracellular Calcium Dynamics Chamakuri Nagaiah 1 , Gerald Warnecke 1 udiger 2 , Martin Falcke 2 Sten R 1 Institute for Analysis and Numerics Otto-von-Guericke University, Magdeburg 2 Department of Theoritical


  1. Parallel Numerical Solution of Intracellular Calcium Dynamics Chamakuri Nagaiah 1 , Gerald Warnecke 1 udiger 2 , Martin Falcke 2 Sten R¨ 1 Institute for Analysis and Numerics Otto-von-Guericke University, Magdeburg 2 Department of Theoritical Physics Hahn-Meitner Institute, Berlin July 3-7 2006 Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 1 / 26

  2. Outline Introduction 1 Governing Equations in 2D 2 Grid Adaptivity 3 FEM Discretization 4 Numerical Results 5 Conclusions and Future Work 6 Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 2 / 26

  3. Introduction The endoplasmic reticulum (ER) has a high calcium concentration Channels: ER → cytosol, pumps: cytosol → ER Ca 2 + is released by transient openings of channels Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 3 / 26

  4. Introduction channel opens, releases Ca 2 + from the ER into the cytosol Ca 2 + diffuses to neighboring channels increase of Ca 2 + favors opening: amplification very high Ca 2 + decreases opening probability: inhibition Ca 2 + is pumped back from the cytosol into the ER Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 4 / 26

  5. Structure of Cluster and Channels 20,000-1000,000 nm Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 5 / 26

  6. Experimental Result < experimentmovie . avi > Puffs and waves in the stochastic regime (I. Parker, UC Irvine) Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 6 / 26

  7. Deterministic Equations in 2D c 2 ∂ c � = D c ∆ c + ( P l + P c ( r ))( E − c ) − P p d + c 2 − H i ( c , b i ) K 2 ∂ t i c 2 ∂ E � � � = D E ∆ E − γ ( P l + P c ( r ))( E − c ) − P p − K j ( c , b E , j ) K 2 d + c 2 ∂ t j ∂ b i = D b , i ∆ b i + H i ( c , b i ) , i = 0 , n − 1 ∂ t ∂ b E , j = D E , j ∆ b E , j + K j ( E , b E , j ) , j = 0 , m − 1 . ∂ t where H i = k + b , i ( B i − b i ) c − k − b , i b i E , j ( G i − b E , j ) E − k − K j = k + E , j b E , j B.C’s: no flux at the boundaries [Thul 04; Falcke 03,04]. Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 7 / 26

  8. Determination of P c ( r ) Each cluster is given by a fixed position � X i and its radius � R i = R S N open , i N open , i is the number of open channels in cluster i . This number is determined by channel dynamics. � � � r i − � � � P ch if X i � < R i for a cluster i � � P c ( � r i ) = 0 otherwise Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 8 / 26

  9. Zienkiewicz-Zhu Error Indicator Let Gu h ∈ V h be the � ., . � h -projection of ∇ u h onto V h , calculated by | T | � Gu h ( x i ) = | w x |∇ u h | T ( x i ) T ⊂ w x Error estimator η Z , T := � Gu h − ∇ u h � L 2 ( T ) and 1 / 2     � η 2 η Z := Z , T  T ∈T h  O. C. Zienkiewicz, J. Z. Zhu. A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Num. Meth. Eng . 24 (1987) 337-357 Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 9 / 26

  10. Zienkiewicz-Zhu Error Indicator Let λ ( T ) ∈ N 0 be the refinement level of triangle T ∈ T h , λ max ∈ N 0 be a given maximum refinement level ϕ 1 , . . . , ϕ λ max given real numbers satisfying 0 ≤ ϕ 1 ≤ . . . ≤ ϕ λ max. Triangle T is marked for refinement if η Z ∈ [ ϕ i , ϕ i + 1 ] and λ ( T ) < i , i = 0 , . . . , λ max. Adaption parameters are λ max = 6 and ϕ 1 = 0 . 0001 , ϕ 2 = 0 . 0002 , ϕ 3 = 0 . 0004 , ϕ 4 = 0 . 0008 , ϕ 5 = 0 . 0016 , ϕ 6 = 0 . 0032. Programm package UG (Unstructured Grid) developed by group of G. Wittum and P . Bastian at University of Heidelberg. P . Bastian, K. Birken, S. Lang, K. Johannsen, N. Neuß, H. Rentz-Reichert and C. Wieners. UG: A flexible software toolbox for solving partial differential equations. Computing and Visualization in Science, 1 (1997) 27–40 Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 10 / 26

  11. Adaptive Mesh for Single Cluster level 0 (initial mesh) level 1 level 6 nodes = 2378 nodes = 2433 nodes = 2766 elements = 4566 elements = 4676 elements = 5342 Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 11 / 26

  12. Adaptive Mesh for 100 Clusters level 0 (initial mesh) level 1 level 6 nodes = 3503 nodes = 4964 nodes = 19367 elements = 6776 elements = 9698 elements = 38204 Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 12 / 26

  13. Typical Problem ∂ u ( x , t ) − ∇ · ( a ( x ) ∇ u ( x , t )) + s ( u ( x , t )) = f ( x , t ) in Ω × ( 0 , T ] ∂ t ∂ u ( x , t ) = 0 on ∂ Ω × ( 0 , T ] . ∂η Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 13 / 26

  14. Spatial Discretization Weak formulation find u ∈ V = H 1 (Ω) such that � ∂ u ∂ t , v � + � a ( x ) ∇ u , ∇ v � + � s ( u ) , v � = � f , v � for all v ∈ V � ∂ u h ∂ t , v h � + � a ( x ) ∇ u h , ∇ v h � + � s ( u h ) , v h � = � f , v h � for all v h ∈ V h Approximate the solution u h ∈ V h using the basis functions u h ( t , x ) = � N i = 1 u i ( t ) φ i ( x ) Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 14 / 26

  15. Spatial Discretization M˙ u + Au + S = F (1) where M - mass matrix, A - stiffness matrix. The matrices are defined as follows, M = � φ i , φ j � , A = � a ( x ) ∇ φ i , ∇ φ j � S = � s ( � N i = 1 u i ( t ) φ i ( x )) , φ j � F = � f , φ j � . Approximate the term S using quadrature rule S = � φ i , φ j � s ( u i ) = MR . Mass lumping, inverting the lumped mass matrix u = − M − 1 Au − R + M − 1 F ˙ (2) Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 15 / 26

  16. Time Discretization We considered the ODE problem ∂ u u ( t 0 ) = u 0 . ∂ t = F ( t , u ) , (3) The i -th time step of a W-method of order p with embedding of order ˆ p � = p has the form j − 1 j − 1 � � t i + τ i a j , u i + τ i � � ( I − τ i γ J ) k j = + c lj k l , j = 1 , . . . , s , (4) F b lj k l l = 1 l = 1 s u i + τ i � u i + 1 = d l k l , (5) l = 1 s u i + τ i ˆ u i + 1 � ˆ = d l k l . (6) l = 1 B. A. Schmitt and R. Weiner. Matrix-free W-methods using a multiple Arnoldi iteration. Appl. Num. Math. 18 (1995) 307-320 Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 16 / 26

  17. Time Discretization We use a W-method with s = 3 stages given by the coefficients √ γ = 1 − 1 2 , a 1 = 0 , a 2 = 1 , a 3 = 1 , b 12 = 1 , b 13 = 1 , b 23 = 0 , 2 √ √ c 12 = − 2 − 2 , c 13 = − 1 , c 23 = − 1 + 2 , √ d 2 = 1 2 − 1 d 3 = 1 d 1 = 1 , 2 , 2 , 2 √ √ √ d 1 = 9 10 − 1 d 2 = 9 20 − 11 d 3 = 11 20 + 1 ˆ ˆ ˆ 2 , 2 , 2 . (7) 20 20 20 This method was used by Schmitt and Weiner for the construction of a Krylov-W-method. Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 17 / 26

  18. Time Discretization A new time step τ new is computed by  β max τ i , τ > β max τ i , ¯ 1 � TOL t � p + 1 ˆ  τ := βτ i β min τ i , τ < β min τ i , ¯ , τ new := ¯ ǫ τ, ¯ otherwise .  where β > 0 is safety factor. Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 18 / 26

  19. Linear Solver Solve s linear systems of the general form ( I − τ i γ J ) k j = b j , j = 1 , . . . , s . where k j are the unknown vectors and A := I − τ i γ J is the same for all stages. Iterative solvers are appropriate BiCGSTAB method with ILU preconditioning. Tolerance for the linear solver is TOL LS = α LS TOL t /τ i H.A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (1994) 631-644 Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 19 / 26

  20. Numerical Results < Calcium 100 clustersStoc . avi > Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 20 / 26

  21. Time Step Rejections Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 21 / 26

  22. Numerical Result with One Opening Channel Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 22 / 26

  23. Domain Decomposition using RIB algorithm B. Hendrickson, R. Leland. The CHACO user’s guide 1.0. Technical Report SAND93-1301, Sandia National Laboratory, 1993. Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 23 / 26

  24. Domain Decomposition using RIB algorithm nodes = 33,322 elements = 66,370 unknowns = 133,288 nodes = 32,417 elements = 64,560 unknowns = 129,668 Chamakuri Nagaiah (IAN) Otto-von-Guericke Universit¨ at Magdeburg DD17, Austria, July 3-7 2006 24 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend