painting squares with 2 1 shades
play

Painting Squares with 2 -1 shades Daniel W. Cranston Virginia - PowerPoint PPT Presentation

Painting Squares with 2 -1 shades Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu Joint with Landon Rabern Slides available on my webpage SIAM Discrete Math 19 June 2014 Coloring Squares Coloring Squares Thm


  1. Painting Squares with ∆ 2 -1 shades Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu Joint with Landon Rabern Slides available on my webpage SIAM Discrete Math 19 June 2014

  2. Coloring Squares

  3. Coloring Squares Thm [Brooks 1941] : If ∆( G ) ≥ 3 and ω ( G ) ≤ ∆( G ) then χ ( G ) ≤ ∆( G ).

  4. Coloring Squares Thm [Brooks 1941] : If ∆( G 2 ) ≥ 3 and ω ( G 2 ) ≤ ∆( G 2 ), then χ ( G 2 ) ≤ ∆( G 2 )

  5. Coloring Squares Thm [Brooks 1941] : If ∆( G 2 ) ≥ 3 and ω ( G 2 ) ≤ ∆( G 2 ), then χ ( G 2 ) ≤ ∆( G 2 ) ≤ ∆( G ) 2 .

  6. Coloring Squares Thm [Brooks 1941] : If ∆( G 2 ) ≥ 3 and ω ( G 2 ) ≤ ∆( G 2 ), then χ ( G 2 ) ≤ ∆( G 2 ) ≤ ∆( G ) 2 . Thm [C.–Kim ’08] : If ∆( G ) = 3 and ω ( G 2 ) ≤ 8, then χ ( G 2 ) ≤ 8.

  7. Coloring Squares Thm [Brooks 1941] : If ∆( G 2 ) ≥ 3 and ω ( G 2 ) ≤ ∆( G 2 ), then χ ( G 2 ) ≤ ∆( G 2 ) ≤ ∆( G ) 2 . Thm [C.–Kim ’08] : If ∆( G ) = 3 and ω ( G 2 ) ≤ 8, then χ ℓ ( G 2 ) ≤ 8.

  8. Coloring Squares Thm [Brooks 1941] : If ∆( G 2 ) ≥ 3 and ω ( G 2 ) ≤ ∆( G 2 ), then χ ( G 2 ) ≤ ∆( G 2 ) ≤ ∆( G ) 2 . Thm [C.–Kim ’08] : If ∆( G ) = 3 and ω ( G 2 ) ≤ 8, then χ ℓ ( G 2 ) ≤ 8. If G is connected and not Petersen, then ω ( G 2 ) ≤ 8.

  9. Coloring Squares Thm [Brooks 1941] : If ∆( G 2 ) ≥ 3 and ω ( G 2 ) ≤ ∆( G 2 ), then χ ( G 2 ) ≤ ∆( G 2 ) ≤ ∆( G ) 2 . Thm [C.–Kim ’08] : If ∆( G ) = 3 and ω ( G 2 ) ≤ 8, then χ ℓ ( G 2 ) ≤ 8. If G is connected and not Petersen, then ω ( G 2 ) ≤ 8. Conj [C.–Kim ’08] : If G is connected, not a Moore graph, and ∆( G ) ≥ 3, then χ ℓ ( G 2 ) ≤ ∆( G ) 2 − 1.

  10. Coloring Squares Thm [Brooks 1941] : If ∆( G 2 ) ≥ 3 and ω ( G 2 ) ≤ ∆( G 2 ), then χ ( G 2 ) ≤ ∆( G 2 ) ≤ ∆( G ) 2 . Thm [C.–Kim ’08] : If ∆( G ) = 3 and ω ( G 2 ) ≤ 8, then χ ℓ ( G 2 ) ≤ 8. If G is connected and not Petersen, then ω ( G 2 ) ≤ 8. Conj [C.–Kim ’08] : If G is connected, not a Moore graph, and ∆( G ) ≥ 3, then χ ℓ ( G 2 ) ≤ ∆( G ) 2 − 1.

  11. Coloring Squares Thm [Brooks 1941] : If ∆( G 2 ) ≥ 3 and ω ( G 2 ) ≤ ∆( G 2 ), then χ ( G 2 ) ≤ ∆( G 2 ) ≤ ∆( G ) 2 . Thm [C.–Kim ’08] : If ∆( G ) = 3 and ω ( G 2 ) ≤ 8, then χ ℓ ( G 2 ) ≤ 8. If G is connected and not Petersen, then ω ( G 2 ) ≤ 8. nale Conj [C.–Kim ’08] : If G is connected, not a Moore graph, and ∆( G ) ≥ 3, then χ ℓ ( G 2 ) ≤ ∆( G ) 2 − 1.

  12. Coloring Squares Thm [Brooks 1941] : If ∆( G 2 ) ≥ 3 and ω ( G 2 ) ≤ ∆( G 2 ), then χ ( G 2 ) ≤ ∆( G 2 ) ≤ ∆( G ) 2 . Thm [C.–Kim ’08] : If ∆( G ) = 3 and ω ( G 2 ) ≤ 8, then χ ℓ ( G 2 ) ≤ 8. If G is connected and not Petersen, then ω ( G 2 ) ≤ 8. nale Conj [C.–Kim ’08] : If G is connected, not a Moore graph, and ∆( G ) ≥ 3, then χ ℓ ( G 2 ) ≤ ∆( G ) 2 − 1. Thm [C.-Rabern ’14+] : If G is connected, not a Moore graph, and ∆( G ) ≥ 3, then χ ℓ ( G 2 ) ≤ ∆( G ) 2 − 1.

  13. Coloring Squares Thm [Brooks 1941] : If ∆( G 2 ) ≥ 3 and ω ( G 2 ) ≤ ∆( G 2 ), then χ ( G 2 ) ≤ ∆( G 2 ) ≤ ∆( G ) 2 . Thm [C.–Kim ’08] : If ∆( G ) = 3 and ω ( G 2 ) ≤ 8, then χ ℓ ( G 2 ) ≤ 8. If G is connected and not Petersen, then ω ( G 2 ) ≤ 8. nale Conj [C.–Kim ’08] : If G is connected, not a Moore graph, and ∆( G ) ≥ 3, then χ ℓ ( G 2 ) ≤ ∆( G ) 2 − 1. Thm [C.-Rabern ’14+] : If G is connected, not a Moore graph, and ∆( G ) ≥ 3, then χ p ( G 2 ) ≤ ∆( G ) 2 − 1.

  14. Related Problems

  15. Related Problems Wegner’s (Very General) Conjecture [1977] : If G k is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1 χ ( G d ) = max ω ( G d ) . max G ∈G k G ∈G k

  16. Related Problems Wegner’s (Very General) Conjecture [1977] : If G k is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1 χ ( G d ) = max ω ( G d ) . max G ∈G k G ∈G k ◮ Our result implies Wegner’s conj. for d = 2 and k ∈ { 4 , 5 } .

  17. Related Problems Wegner’s (Very General) Conjecture [1977] : If G k is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1 χ ( G d ) = max ω ( G d ) . max G ∈G k G ∈G k ◮ Our result implies Wegner’s conj. for d = 2 and k ∈ { 4 , 5 } .

  18. Related Problems Wegner’s (Very General) Conjecture [1977] : If G k is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1 χ ( G d ) = max ω ( G d ) . max G ∈G k G ∈G k ◮ Our result implies Wegner’s conj. for d = 2 and k ∈ { 4 , 5 } .

  19. Related Problems Wegner’s (Very General) Conjecture [1977] : If G k is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1 χ ( G d ) = max ω ( G d ) . max G ∈G k G ∈G k ◮ Our result implies Wegner’s conj. for d = 2 and k ∈ { 4 , 5 } . Borodin–Kostochka Conjecture [1977] :

  20. Related Problems Wegner’s (Very General) Conjecture [1977] : If G k is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1 χ ( G d ) = max ω ( G d ) . max G ∈G k G ∈G k ◮ Our result implies Wegner’s conj. for d = 2 and k ∈ { 4 , 5 } . Borodin–Kostochka Conjecture [1977] : If ∆( G ) ≥ 9 and ω ( G ) ≤ ∆( G ) − 1, then χ ( G ) ≤ ∆( G ) − 1.

  21. Related Problems Wegner’s (Very General) Conjecture [1977] : If G k is the class of all graphs with ∆ ≤ k , then for all k ≥ 3, d ≥ 1 χ ( G d ) = max ω ( G d ) . max G ∈G k G ∈G k ◮ Our result implies Wegner’s conj. for d = 2 and k ∈ { 4 , 5 } . Borodin–Kostochka Conjecture [1977] : If ∆( G ) ≥ 9 and ω ( G ) ≤ ∆( G ) − 1, then χ ( G ) ≤ ∆( G ) − 1. ◮ Our result implies B–K conj. for G 2 when G has girth ≥ 9.

  22. Key Idea: d 1 -choosable graphs

  23. Key Idea: d 1 -choosable graphs Def: A graph G is d 1 -choosable if it has an L -coloring whenever | L ( v ) | = d ( v ) − 1 for all v ∈ V ( G ).

  24. Key Idea: d 1 -choosable graphs Def: A graph G is d 1 -choosable if it has an L -coloring whenever | L ( v ) | = d ( v ) − 1 for all v ∈ V ( G ). Lem: Minimal c/e G 2 contains no induced d 1 -choosable subgraph H .

  25. Key Idea: d 1 -choosable graphs Def: A graph G is d 1 -choosable if it has an L -coloring whenever | L ( v ) | = d ( v ) − 1 for all v ∈ V ( G ). Lem: Minimal c/e G 2 contains no induced d 1 -choosable subgraph H . Pf:

  26. Key Idea: d 1 -choosable graphs Def: A graph G is d 1 -choosable if it has an L -coloring whenever | L ( v ) | = d ( v ) − 1 for all v ∈ V ( G ). G 2 Lem: Minimal c/e G 2 contains no induced d 1 -choosable subgraph H . Pf:

  27. Key Idea: d 1 -choosable graphs Def: A graph G is d 1 -choosable if it has an L -coloring whenever | L ( v ) | = d ( v ) − 1 for all v ∈ V ( G ). G 2 H Lem: Minimal c/e G 2 contains no induced d 1 -choosable subgraph H . Pf:

  28. Key Idea: d 1 -choosable graphs Def: A graph G is d 1 -choosable if it has an L -coloring whenever | L ( v ) | = d ( v ) − 1 for all v ∈ V ( G ). G 2 H Lem: Minimal c/e G 2 contains no induced d 1 -choosable subgraph H . Pf: Color G 2 \ V ( H ) by minimality.

  29. Key Idea: d 1 -choosable graphs Def: A graph G is d 1 -choosable if it has an L -coloring whenever | L ( v ) | = d ( v ) − 1 for all v ∈ V ( G ). G 2 H Lem: Minimal c/e G 2 contains no induced d 1 -choosable subgraph H . Pf: Color G 2 \ V ( H ) by minimality. Consider a vertex v ∈ V ( H ).

  30. Key Idea: d 1 -choosable graphs Def: A graph G is d 1 -choosable if it has an L -coloring whenever | L ( v ) | = d ( v ) − 1 for all v ∈ V ( G ). G 2 v H Lem: Minimal c/e G 2 contains no induced d 1 -choosable subgraph H . Pf: Color G 2 \ V ( H ) by minimality. Consider a vertex v ∈ V ( H ).

  31. Key Idea: d 1 -choosable graphs Def: A graph G is d 1 -choosable if it has an L -coloring whenever | L ( v ) | = d ( v ) − 1 for all v ∈ V ( G ). G 2 v H Lem: Minimal c/e G 2 contains no induced d 1 -choosable subgraph H . Pf: Color G 2 \ V ( H ) by minimality. Consider a vertex v ∈ V ( H ). Its number of colors available is at least ∆ 2 − 1 − ( d G 2 ( v ) − d H ( v ))

  32. Key Idea: d 1 -choosable graphs Def: A graph G is d 1 -choosable if it has an L -coloring whenever | L ( v ) | = d ( v ) − 1 for all v ∈ V ( G ). G 2 v H Lem: Minimal c/e G 2 contains no induced d 1 -choosable subgraph H . Pf: Color G 2 \ V ( H ) by minimality. Consider a vertex v ∈ V ( H ). Its number of colors available is at least ∆ 2 − 1 − ( d G 2 ( v ) − d H ( v )) ≥ ∆ 2 − 1 − (∆ 2 − d H ( v ))

  33. Key Idea: d 1 -choosable graphs Def: A graph G is d 1 -choosable if it has an L -coloring whenever | L ( v ) | = d ( v ) − 1 for all v ∈ V ( G ). G 2 v H Lem: Minimal c/e G 2 contains no induced d 1 -choosable subgraph H . Pf: Color G 2 \ V ( H ) by minimality. Consider a vertex v ∈ V ( H ). Its number of colors available is at least ∆ 2 − 1 − ( d G 2 ( v ) − d H ( v )) ≥ ∆ 2 − 1 − (∆ 2 − d H ( v )) = d H ( v ) − 1.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend