coloring algorithms on subcubic graphs
play

Coloring Algorithms on Subcubic Graphs Harold N. Gabow, San - PowerPoint PPT Presentation

Coloring Algorithms on Subcubic Graphs Harold N. Gabow, San Skulrattanakulchai hal@cs.colorado.edu, skulratt@cs.colorado.edu University of Colorado at Boulder Colorado, USA Coloring Algorithms on Subcubic Graphs p.1/56 Introduction Graph


  1. Coloring Algorithms on Subcubic Graphs Harold N. Gabow, San Skulrattanakulchai hal@cs.colorado.edu, skulratt@cs.colorado.edu University of Colorado at Boulder Colorado, USA Coloring Algorithms on Subcubic Graphs – p.1/56

  2. Introduction Graph Coloring To color a graph ≡ to assign color to vertices/edges so that no adjacent/incident vertices/edges receive the same color Flavors: vertex, edge, total, list coloring Why subcubic graphs (∆ = 3) ? some problems too difficult on general graphs some problems have linear-time reduction to subcubic graphs some “real-world” applications are on subcubic graphs Coloring Algorithms on Subcubic Graphs – p.2/56

  3. Notation & NP-Hardness Notation (list) chromatic number χ ( χ ℓ ) (list) edge chromatic number χ ′ ( χ ′ ℓ ) (list) total chromatic number χ ′′ ( χ ′′ ℓ ) NP -hardness Vertex Coloring—Karp (1972) from 3-SAT Edge Coloring—Holyer (1981) from 3-SAT Total Coloring—Sánchez-Arroyo (1989) from Edge Coloring Coloring Algorithms on Subcubic Graphs – p.3/56

  4. Conjectures & Some Known Facts χ ′ ℓ = χ ′ ? List Coloring Conjecture (LCC) Coloring Algorithms on Subcubic Graphs – p.4/56

  5. Conjectures & Some Known Facts χ ′ ℓ = χ ′ ? List Coloring Conjecture (LCC) χ ′′ ≤ ∆ + 2 for simple Total Coloring Conjecture (TCC) graphs? Coloring Algorithms on Subcubic Graphs – p.4/56

  6. Conjectures & Some Known Facts χ ′ ℓ = χ ′ ? List Coloring Conjecture (LCC) χ ′′ ≤ ∆ + 2 for simple Total Coloring Conjecture (TCC) graphs? List Total Coloring Conjecture χ ′′ ℓ = χ ′′ ? Coloring Algorithms on Subcubic Graphs – p.4/56

  7. Conjectures & Some Known Facts χ ′ ℓ = χ ′ ? List Coloring Conjecture (LCC) χ ′′ ≤ ∆ + 2 for simple Total Coloring Conjecture (TCC) graphs? List Total Coloring Conjecture χ ′′ ℓ = χ ′′ ? χ ℓ � = χ in general! 1,2 • • 1,2 ❜ ✧ ❡ ✪ ❜ ✧ ✧ ❜ ✧ ❜ ❡ ✪ 2,3 • • 2,3 ❜ ✧ ✪ ❡ ❜ ✧ ✧ ❜ ✪ ✧ ❜ ❡ 3,1 • • 3,1 Coloring Algorithms on Subcubic Graphs – p.4/56

  8. Conjectures & Some Known Facts χ ′ ℓ = χ ′ ? List Coloring Conjecture (LCC) χ ′′ ≤ ∆ + 2 for simple Total Coloring Conjecture (TCC) graphs? List Total Coloring Conjecture χ ′′ ℓ = χ ′′ ? χ ℓ � = χ in general! χ ′ ℓ ≤ ∆ + 1 if ∆ = 3 , 4. LCC holds if graph is bipartite, or series-parallel, or line-perfect, or a multicircuit Coloring Algorithms on Subcubic Graphs – p.4/56

  9. Conjectures & Some Known Facts χ ′ ℓ = χ ′ ? List Coloring Conjecture (LCC) χ ′′ ≤ ∆ + 2 for simple Total Coloring Conjecture (TCC) graphs? List Total Coloring Conjecture χ ′′ ℓ = χ ′′ ? χ ℓ � = χ in general! χ ′ ℓ ≤ ∆ + 1 if ∆ = 3 , 4. LCC holds if graph is bipartite, or series-parallel, or line-perfect, or a multicircuit TCC holds if graph is bipartite, or complete r -partite, or ∆ = 3 , 4, 5, or ∆ ≥ n − 5 , or ∆ ≥ (3 / 4) n Coloring Algorithms on Subcubic Graphs – p.4/56

  10. Conjectures & Some Known Facts χ ′ ℓ = χ ′ ? List Coloring Conjecture (LCC) χ ′′ ≤ ∆ + 2 for simple Total Coloring Conjecture (TCC) graphs? List Total Coloring Conjecture χ ′′ ℓ = χ ′′ ? χ ℓ � = χ in general! χ ′ ℓ ≤ ∆ + 1 if ∆ = 3 , 4. LCC holds if graph is bipartite, or series-parallel, or line-perfect, or a multicircuit TCC holds if graph is bipartite, or complete r -partite, or ∆ = 3 , 4, 5, or ∆ ≥ n − 5 , or ∆ ≥ (3 / 4) n χ ′′ ℓ ≤ 5 if ∆ = 3 Coloring Algorithms on Subcubic Graphs – p.4/56

  11. Contributions Decomposition principle for subcubic graphs New, simpler proofs & linear-time algorithms for 4-edge-coloring (Skulrattanakulchai, IPL 81 (4) 2002, 191–195) 4-list-edge-coloring 5-total-coloring 5-list-total-coloring subcubic graphs. Algorithms shows subcubic graphs satisfy χ ′ ≤ 4 , χ ′ ℓ ≤ 4 , χ ′′ ≤ 5 , χ ′′ ℓ ≤ 5 . The first two are the simplest known, the last two are the first linear-time algorithms. O ( n/ log n ) processors, O (log n ) time whp EREW PRAM algorithm for 4-list-edge-coloring subcubic graphs Coloring Algorithms on Subcubic Graphs – p.5/56

  12. Greedy Coloring? An edge can have up to 4 neighboring edges and 2 neighboring vertices. A vertex can have up to 3 neighboring edges and 3 neighboring vertices. Coloring Algorithms on Subcubic Graphs – p.6/56

  13. Greedy Coloring? An edge can have up to 4 neighboring edges and 2 neighboring vertices. A vertex can have up to 3 neighboring edges and 3 neighboring vertices. So simple-minded greedy coloring fails. Coloring Algorithms on Subcubic Graphs – p.6/56

  14. Decomposition Theorem Coloring Algorithms on Subcubic Graphs – p.7/56

  15. Coloring Algorithms on Subcubic Graphs – p.8/56

  16. Decomposition Theorem A subcubic graph G can be decomposed into edge-disjoint subgraphs C and T , where C is a collection of vertex-disjoint cy- cles and T is a forest of maximum degree no bigger than 3. Furthermore, G admits a decomposition without chords unless it contains a triple bond. Coloring Algorithms on Subcubic Graphs – p.9/56

  17. Tree Edge Coloring Lemma Coloring Algorithms on Subcubic Graphs – p.10/56

  18. 3-edge-coloring Subcubic Tree Coloring Algorithms on Subcubic Graphs – p.11/56

  19. 3-edge-coloring Subcubic Tree 1 Coloring Algorithms on Subcubic Graphs – p.12/56

  20. 3-edge-coloring Subcubic Tree 2 1 Coloring Algorithms on Subcubic Graphs – p.13/56

  21. 3-edge-coloring Subcubic Tree 2 1 2 Coloring Algorithms on Subcubic Graphs – p.14/56

  22. 3-edge-coloring Subcubic Tree 2 1 2 3 Coloring Algorithms on Subcubic Graphs – p.15/56

  23. 3-edge-coloring Subcubic Tree 2 3 1 2 3 Coloring Algorithms on Subcubic Graphs – p.16/56

  24. 3-edge-coloring Subcubic Tree 2 3 1 1 2 3 Coloring Algorithms on Subcubic Graphs – p.17/56

  25. Tree Edge Coloring Lemma Conclusion: A subcubic tree is 3-list-edge-colorable. Coloring Algorithms on Subcubic Graphs – p.18/56

  26. Tree Total Coloring Lemma Coloring Algorithms on Subcubic Graphs – p.19/56

  27. 4-total-coloring Subcubic Tree Coloring Algorithms on Subcubic Graphs – p.20/56

  28. 4-total-coloring Subcubic Tree 1 Coloring Algorithms on Subcubic Graphs – p.21/56

  29. 4-total-coloring Subcubic Tree 1 2 Coloring Algorithms on Subcubic Graphs – p.22/56

  30. 4-total-coloring Subcubic Tree 1 2 3 Coloring Algorithms on Subcubic Graphs – p.23/56

  31. 4-total-coloring Subcubic Tree 1 3 2 3 Coloring Algorithms on Subcubic Graphs – p.24/56

  32. 4-total-coloring Subcubic Tree 1 3 2 3 2 Coloring Algorithms on Subcubic Graphs – p.25/56

  33. 4-total-coloring Subcubic Tree 4 1 3 2 3 2 Coloring Algorithms on Subcubic Graphs – p.26/56

  34. 4-total-coloring Subcubic Tree 2 4 1 3 2 3 2 Coloring Algorithms on Subcubic Graphs – p.27/56

  35. 4-total-coloring Subcubic Tree 1 2 4 1 3 2 3 2 Coloring Algorithms on Subcubic Graphs – p.28/56

  36. 4-total-coloring Subcubic Tree 3 1 2 4 1 3 2 2 3 Coloring Algorithms on Subcubic Graphs – p.29/56

  37. 4-total-coloring Subcubic Tree 3 1 2 3 4 1 3 2 2 3 Coloring Algorithms on Subcubic Graphs – p.30/56

  38. 4-total-coloring Subcubic Tree 3 1 2 3 4 1 1 3 2 2 3 Coloring Algorithms on Subcubic Graphs – p.31/56

  39. 4-total-coloring Subcubic Tree 3 1 2 3 4 1 1 2 3 2 2 3 Coloring Algorithms on Subcubic Graphs – p.32/56

  40. 4-total-coloring Subcubic Tree 3 1 2 3 4 1 1 2 3 2 3 2 3 Coloring Algorithms on Subcubic Graphs – p.33/56

  41. Tree Total Coloring Lemma Conclusion: A subcubic tree is 4-list-total-colorable. Coloring Algorithms on Subcubic Graphs – p.34/56

  42. Cycle Coloring Lemma I Coloring Algorithms on Subcubic Graphs – p.35/56

  43. Cycle Coloring Lemma I >= 2 {1, 2} >= 2 >= 2 {1,2} {1,2} ODD >= 2 >= 2 {1,2} {1,2} >= 2 COLORABLE unless Odd & Same 2−list Coloring Algorithms on Subcubic Graphs – p.36/56

  44. Cycle Coloring Lemma I Vertex Version (CVCL I) A cycle C where every vertex has a list of ≥ 2 colors is vertex-colorable unless C is odd and every list is the same list of 2 colors. Edge Version (CECL I) . . . Coloring Algorithms on Subcubic Graphs – p.37/56

  45. Cycle Coloring Lemma II Coloring Algorithms on Subcubic Graphs – p.38/56

  46. Cycle Coloring Lemma II {1} {2,3} {1,2} ODD {1,2} {1,2} Colorable Coloring Algorithms on Subcubic Graphs – p.39/56

  47. Cycle Coloring Lemma II Vertex Version (CVCL II) Suppose the first vertex v 1 of an odd cycle C has a list of 1 color, vertex v 2 , . . . , v k − 1 has the same list of 2 colors, and the last vertex v k has a list of 2 colors. Suppose also that the list of v 1 is included in the list of v 2 , and the list of v k is not the same as the list of v 2 . Then C is vertex-colorable by colors from these lists. Edge Version (CECL II) . . . Coloring Algorithms on Subcubic Graphs – p.40/56

  48. Cycle Total Coloring Lemma Coloring Algorithms on Subcubic Graphs – p.41/56

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend