outline
play

Outline High-frequency (optical) conductivity of graphene; Optical - PowerPoint PPT Presentation

.. 1,2 , .. 3 , T. Otsuji 3 1. - 2. - 3. Research institute of


  1. Д.А. Свинцов 1,2 , В.И. Рыжий 3 , T. Otsuji 3 1. Физико - технологический институт РАН 2. Московский физико - технический институт 3. Research institute of electrical communication, Tohoku university

  2. Outline  High-frequency (optical) conductivity of graphene;  Optical conductivity under population inversion  Direct interband transitions  Carrier-carrier scattering and intraband absorption  Indirect interband transitions

  3. Graphene-based THz electronics? THz lasing in optically or electrically pumped graphene? GOOD IDEA! But what about • Intraband Drude absorption (strong at low frequencies)? F. Bonaccorso, Z. Sun, T. Hasan , and A.C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, (2010). A. Tredicucci and M. S. Vitiello , “Device concepts for graphene - based terahertz photonics,” IEEE J. Sel. Top. Quant. 20 (2014). A. Dubinov, V.Ya. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii , “Terahertz laser with optically pumped graphene layers and Fabri- Perot resonator,” Appl. Phys. Express 2 (2009). V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji , “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110 (2011).

  4. Optical conductivity of graphene   4 1   4 e T e      F T / Re l n 1      2 4  2    1 4 e            / 2 / 2  f f  V C 4 L. A. Falkovsky and A. A. Varlamov, Eur. Phys. J. B 56, 281

  5. Optical conductivity of graphene   4 1   8 e T e      F T / Re l n 1      2 4  2    1      4 / 2 e  V. Ryzhii, M. Ryzhii, and T. Otsuji, F tanh   J. Appl. Phys. 101 , 083114 (2007).   4 2 T

  6. Drude conductivity of clean graphene under population inversion Electron-hole, electron-electron and hole-hole scattering govern the intraband conductivity Velocity-momentum decoupling  0 / p v v p p    p p p p 1 2 3 4 Does not necessarily lead to    v v v v 1 2 3 4 1 e        , 0 V A v v v v  1 2 3 4 fi c F. T. Vasko and V. Ryzhii, Phys. Rev. B 77 , 195433 (2008). D. Sun et. al. New J. Phys. 14 , 105012 (2012). D. Svintsov et. al., Optics Express 22 , 19873 (2014).

  7. Drude conductivity of clean graphene under population inversion Fermi golden rule + occupation numbers of initial and final states: 2    3  2 2   1 e e T          / T    Re 1 / , /  e I T T    ee ee F 3   4  v  0 0 2    3  2 2   2 e e T          / T    Re 1 / , /  e I T T    eh eh F 3   4   v 0 0 d d Q k k d                 2 2 2 1 2 ( ) cos / 2 cos / 2 [ / ] I n k k T k k         , 1 2 1 2 1 2 ee 2 2 ee ( ) Q Q       ( ) ( ) 1 ( ) 1 ( ) f k f k f k f k     1 2 1 2 d d Q k k d                    2 2 2 2 2 1 2 ( ) cos / 2 cos / 2 sin / 2 sin / 2 I n         eh , eh 1 2 1 2 2 2 Q            [ / ] ( ) ( ) 1 ( ) 1 ( ) k k T k k f k f k f k f k         1 2 1 2 1 2 1 2

  8. Interband amplification vs. carrier- carrier absorption Real parts of net dynamic conductivity Re( σ intra + σ inter ) normalized by σ q =e 2 /4 ђ at different quasi-Fermi energies ε F in graphene structures with different background dielectric constants κ0 (T = 300 K). • Negative conductivity is possible in suspended graphene above ~6 THz; • In high- k background above ~3 THz; • Negative dynamic conductivity threshold slowly moves to lower values as k 0 increases.

  9. Dependence on background dielectric constant Threshold frequencies ( solutions of Re( σ intra +σ inter ) = 0 ) vs. background dielectric constant at different temperatures T ( ε F = 75 meV) 2 2   1 e e T Thomas-Fermi screening leads to weak     F T / , 8 ln 1 V q e    dependence on k 0 q TF q q v v 0 T F 0 0 0

  10. Raise interband amplification above 2.3% D. Svintsov, V. Ryzhii, T. Otsuji “Negative dynamic Drude conductivity in pumped graphene” arXiv:1408.7023

  11. Conductivity due to indirect inter- and intraband transitions   ( , ) ( , ) v v A v v A e e ˆ ˆ           p p 0 p p 0 cc cv | | | | V p c V p c V p c V p v     S S pp pp 2 2 c c    2 g  2 ˆ 2                         D Re ( ) ( ) | | f f p V p v v               intra q p p p p S p p 3   , , p p Energy conservation requires q=| p - p’ |> w /v 0 !    2 g  2 ˆ 2                       D Re ( ) ( ) | | . f f p c V p v v v           inter q v p c p p p S p p 3  , p p Energy conservation requires q=| p - p’ |< w /v 0 ! 2 ˆ    | | Need scattering potentials with p q V p S q   either singular at or quickly decreasing as ! q  0

  12. Conductivity due to indirect inter- and intraband transitions  Scattering by Gaussian correlated disorder          2 2 2 ( ) ( ) exp | | / c V r V r V r r l       1 cos 2 ˆ           2 ( /2) pp 2 2 ql | | p p V l V e c S c 2 Intraband Drude absorption is suppressed due to requirement q=| p - p’ |> w /v 0 F. T. Vasko and V. Ryzhii, Phys. Rev. B 76 , 233404 (2007). G. M. Rutter, J.N. Crain, N.P. Guisinger, T. Li, P.N. First, J.A. Stroscio, Science 317, 219 (2007)

  13. Conductivity due to indirect inter- and intraband transitions Calculated frequency dependencies of the interband, Real part of the net Drude conductivity (normalized intraband and net Drude conductivity (normalized by s q ) in by s q ) vs. frequency at different correlation lengths l c . pumped graphene with quasi-Fermi energy e F = 50 meV. The distribution of impurities is Gaussian. The dashed line indicates the region w < n , where our calculations are not rigorous.

  14. Net dynamic conductivity of graphene with population inversion

  15. Conclusions  Graphene with population inversion exhibits negative dynamic conductivity (optical gain) in THz and IR range;  Carrier-carrier scattering sets the threshold of negative dynamic conductivity in clean graphene;  Indirect interband transitions can improve the optical gain above 2.3%.

  16. Conductivity of graphene            2 2 d p v f f 2 ie   x p k /2 p k + /2                    2 1 i      ,   p k /2 p k + /2 p k + / 2 p k /2           2 d p v v f f  2 Intraband term 2 ie   12 x 21 x p k /2 p k + /2       2 2 2                1 i       p k + /2 p k /2 p k + /2 p k /2 Interband term 2 e                Uniform field R e / 2 / 2  f f   0 k V C k=0 4 L. A. Falkovsky and A. A. Varlamov, Eur. Phys. J. B 56, 281

  17. Optical conductivity of graphene: experiment  Optical / IR range  Far IR and THz range   2 4 Re    e 4 Re     inter   2.3% k intr a e k inter    int ra c c 2 2 c e K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Phys. Rev. Lett. 101 , 196405 (2008). L. Ren, Q. Zhang et.al., Nano Lett. 12 , 3711 (2012).

  18. Population inversion in graphene  Optical pumping + fast relaxation + slow recombination S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, Phys. Rev. B 85 , 035443 (2012). T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J.Wang, Phys. Rev. Lett. 108 , 167401 (2012).

  19. Negative conductivity and optical gain under population inversion S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, Phys. Rev. B 85 , 035443 (2012). T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J.Wang, Phys. Rev. Lett. 108 , 167401 (2012).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend