outline
play

Outline Last lecture: stereo reconstruction with calibrated - PDF document

Outline Last lecture: stereo reconstruction with calibrated cameras non-geometric correspondence constraints Lecture 12: Multi-view Homogeneous coordinates, projection matrices geometry / Stereo III Camera calibration


  1. Outline • Last lecture: – stereo reconstruction with calibrated cameras – non-geometric correspondence constraints Lecture 12: Multi-view • Homogeneous coordinates, projection matrices geometry / Stereo III • Camera calibration • Weak calibration/self-calibration Tuesday, Oct 23 – Fundamental matrix – 8-point algorithm CS 378/395T Prof. Kristen Grauman Review: stereo with calibrated cameras Review: the essential matrix [ ] Vector p’ in ( ) ′ ⋅ × = second coord. p T R p 0 sys. has [ ] ′ ⋅ = coordinates Rp’ p T R p 0 x in the first one. [ ] = Let E T R x Τ p ′ = p E 0 E is the essential matrix , which relates corresponding image points in both cameras, given the rotation and translation between their coordinate systems. Camera-centered coordinate systems are related by known rotation R and translation T . Review: stereo with calibrated cameras Review: disparity/depth maps • Image pair image I´(x´,y´) image I(x,y) Disparity map D(x,y) • Detect some features • Compute E from R and T • Match features using the epipolar and other constraints • Triangulate for 3d structure (x´,y´)=(x+D(x,y),y)

  2. Review: correspondence problem Review: correspondence problem • To find matches in the image pair, assume – Most scene points visible from both views Multiple – Image regions for the matches are similar in match appearance hypotheses • Dense or sparse matches satisfy • Additional (non-epipolar) constraints: epipolar – Similarity constraint, – Uniqueness but which is – Ordering correct? – Figural continuity – Disparity gradient Figure from Gee & Cipolla 1999 Homogeneous coordinates Review: correspondence error sources • Low-contrast / textureless image regions • Extend Euclidean space: add an extra coordinate • Points are represented by equivalence classes • Occlusions • Why? This will allow us to write process of • Camera calibration errors perspective projection as a matrix • Poor image resolution • Violations of brightness constancy (specular 2d: (x, y)’ � (x, y, 1)’ Mapping to reflections) homogeneous 3d: (x, y, z)’ � (x, y, z, 1)’ coordinates • Large motions 2d: (x, y, w)’ � (x/w, y/w)’ Mapping back from homogeneous 3d: (x, y, z, w)’ � (x/w, y/w, z/w)’ coordinates Homogeneous coordinates Perspective projection equations •Equivalence relation: Image plane Focal length (x, y, z, w) is the same as (kx, ky, kz, kw) Optical Camera axis frame Homogeneous coordinates are only defined up to a scale Scene point Image coordinates

  3. Projection matrix for perspective projection Projection matrix for perspective projection fY fX y = x = Z Z From pinhole From pinhole camera model camera model Same thing, but written in terms of homogeneous coordinates Camera parameters Projection matrix for orthographic projection • Extrinsic: location and orientation of camera frame with respect to reference frame • Intrinsic: how to map pixel coordinates to image plane coordinates 1 Reference frame X Y x = y = Camera 1 frame 1 1 Rigid transformations Rotation about coordinate axes in 3d Combinations of rotations and translation Express 3d rotation as • Translation: add values to coordinates series of rotations around coordinate • Rotation: matrix multiplication α β γ , , axes by angles Overall rotation is product of these elementary rotations: R = R R R x y z

  4. Camera parameters Extrinsic camera parameters • Extrinsic: location and orientation of camera = − frame with respect to reference frame P R ( P T ) c w • Intrinsic: how to map pixel coordinates to image plane coordinates Point in camera Point in world reference frame ( ) = Reference P X , Y , Z frame c Camera 1 frame Intrinsic camera parameters Camera parameters • We know that in terms of camera reference frame: • Ignoring any geometric distortions from optics, we can describe them by: = − − x ( x o ) s • Substituting previous eqns describing intrinsic and im x x extrinsic parameters, can relate pixels coordinates = − − to world points: y ( y o ) s Τ − im y y R ( P T ) − − = 1 w ( x o ) s f Τ im x x − ( ) R P T R i = Row i of 3 w rotation matrix Τ − Coordinates of Coordinates of Coordinates of Effective size of a R ( P T ) − − = 2 projected point in image point in image center in pixel (mm) w ( y o ) s f Τ im y y − camera reference pixel units pixel units R ( P T ) frame 3 w Linear version of perspective Calibrating a camera projection equations point in camera coordinates • Compute intrinsic and extrinsic • This can be rewritten X w x 1 parameters using observed as a matrix product = M int M ext Y w x 2 camera data using homogeneous Z w x 3 coordinates: 1 Main idea = x x / x im 1 3 • Place “calibration object” with = y x / x im 2 3 known geometry in the scene • Get correspondences Τ − r r r R T − 11 12 13 1 f / s 0 o • Solve for mapping from scene Τ x x − M int = − r r r R T 0 f / s o M ext = 21 22 23 2 to image: estimate M = M int M ext y y Τ − 0 0 1 r r r R T 31 32 33 3

  5. Linear version of perspective Estimating the projection matrix projection equations P w in homog. ⋅ M P = − ⋅ • This can be rewritten X w = x 1 1 w 0 ( M x M ) P x ⋅ as a matrix product im 1 im 3 w = M int M ext Y w M P x 2 3 w using homogeneous Z w x 3 ⋅ M P coordinates: = M 1 = − ⋅ 2 w y 0 ( M y M ) P im ⋅ M P 2 im 3 w 3 w product M is single ⋅ M P = projection matrix = 1 w x x x / x encoding both im ⋅ M P im 1 3 extrinsic and intrinsic 3 w = ⋅ parameters y M x P / x = y 2 w im 2 3 ⋅ Let M i be row im M P 3 w i of matrix M Estimating the projection matrix Estimating the projection matrix = − ⋅ 0 ( M x M ) P 1 im 3 w Τ Τ Τ − = − ⋅ 0 ( M y M ) P M P 0 x P For a given feature point: 2 im 3 w 1 0 w im w = M Τ Τ − T 2 0 0 P y P = − ⋅ M 0 ( M x M ) P w im w 3 1 im 3 w = − ⋅ 0 ( M y M ) P 2 im 3 w Expanding this to see the elements: In matrix form: − − − − 0 = X Y Z 1 0 0 0 0 x X x Y x Z x w w w im w im w im w im Τ Τ Τ − − − − − 0 0 0 0 0 X Y Z 1 y X y Y y Z y P 0 x P M w w w im w im w im w im 1 0 = w im w M Τ Τ − T 2 0 0 P y P M w im w 3 Stack rows of matrix M Estimating the projection matrix Summary: camera calibration This is true for every feature point, so we can stack up n • Associate image points with scene points observed image features and their associated 3d points in single equation: Pm = 0 on object with known geometry P m • Use together with perspective projection − − − − ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) X Y Z 1 0 0 0 0 x X x Y x Z x relationship to estimate projection matrix w w w im w im w im w im − − − − ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) 0 0 0 0 X Y Z 1 y X y Y y Z y im w w w w im w im w im 0 = • (Can also solve for explicit parameters … … … … 0 − − − − ( n ) ( n ) ( n ) ( n ) ( n ) ( n ) ( n ) ( n ) ( n ) ( n ) X Y Z 1 0 0 0 0 x X x Y x Z x themselves) … w w w im w im w im w im − − − − ( n ) ( n ) ( n ) ( n ) ( n ) ( n ) ( n ) ( n ) ( n ) ( n ) 0 0 0 0 X Y Z 1 y X y Y y Z y 0 = im w w w w im w im w im 0 Solve for m ij ’s (the calibration information) with least squares. [F&P Section 3.1]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend